1 | // MESSAGE OPTICAL_FLOW_RAD PACKING |
---|
2 | |
---|
3 | #define MAVLINK_MSG_ID_OPTICAL_FLOW_RAD 106 |
---|
4 | |
---|
5 | MAVPACKED( |
---|
6 | typedef struct __mavlink_optical_flow_rad_t { |
---|
7 | uint64_t time_usec; /*< Timestamp (microseconds, synced to UNIX time or since system boot)*/ |
---|
8 | uint32_t integration_time_us; /*< Integration time in microseconds. Divide integrated_x and integrated_y by the integration time to obtain average flow. The integration time also indicates the.*/ |
---|
9 | float integrated_x; /*< Flow in radians around X axis (Sensor RH rotation about the X axis induces a positive flow. Sensor linear motion along the positive Y axis induces a negative flow.)*/ |
---|
10 | float integrated_y; /*< Flow in radians around Y axis (Sensor RH rotation about the Y axis induces a positive flow. Sensor linear motion along the positive X axis induces a positive flow.)*/ |
---|
11 | float integrated_xgyro; /*< RH rotation around X axis (rad)*/ |
---|
12 | float integrated_ygyro; /*< RH rotation around Y axis (rad)*/ |
---|
13 | float integrated_zgyro; /*< RH rotation around Z axis (rad)*/ |
---|
14 | uint32_t time_delta_distance_us; /*< Time in microseconds since the distance was sampled.*/ |
---|
15 | float distance; /*< Distance to the center of the flow field in meters. Positive value (including zero): distance known. Negative value: Unknown distance.*/ |
---|
16 | int16_t temperature; /*< Temperature * 100 in centi-degrees Celsius*/ |
---|
17 | uint8_t sensor_id; /*< Sensor ID*/ |
---|
18 | uint8_t quality; /*< Optical flow quality / confidence. 0: no valid flow, 255: maximum quality*/ |
---|
19 | }) mavlink_optical_flow_rad_t; |
---|
20 | |
---|
21 | #define MAVLINK_MSG_ID_OPTICAL_FLOW_RAD_LEN 44 |
---|
22 | #define MAVLINK_MSG_ID_OPTICAL_FLOW_RAD_MIN_LEN 44 |
---|
23 | #define MAVLINK_MSG_ID_106_LEN 44 |
---|
24 | #define MAVLINK_MSG_ID_106_MIN_LEN 44 |
---|
25 | |
---|
26 | #define MAVLINK_MSG_ID_OPTICAL_FLOW_RAD_CRC 138 |
---|
27 | #define MAVLINK_MSG_ID_106_CRC 138 |
---|
28 | |
---|
29 | |
---|
30 | |
---|
31 | #if MAVLINK_COMMAND_24BIT |
---|
32 | #define MAVLINK_MESSAGE_INFO_OPTICAL_FLOW_RAD { \ |
---|
33 | 106, \ |
---|
34 | "OPTICAL_FLOW_RAD", \ |
---|
35 | 12, \ |
---|
36 | { { "time_usec", NULL, MAVLINK_TYPE_UINT64_T, 0, 0, offsetof(mavlink_optical_flow_rad_t, time_usec) }, \ |
---|
37 | { "integration_time_us", NULL, MAVLINK_TYPE_UINT32_T, 0, 8, offsetof(mavlink_optical_flow_rad_t, integration_time_us) }, \ |
---|
38 | { "integrated_x", NULL, MAVLINK_TYPE_FLOAT, 0, 12, offsetof(mavlink_optical_flow_rad_t, integrated_x) }, \ |
---|
39 | { "integrated_y", NULL, MAVLINK_TYPE_FLOAT, 0, 16, offsetof(mavlink_optical_flow_rad_t, integrated_y) }, \ |
---|
40 | { "integrated_xgyro", NULL, MAVLINK_TYPE_FLOAT, 0, 20, offsetof(mavlink_optical_flow_rad_t, integrated_xgyro) }, \ |
---|
41 | { "integrated_ygyro", NULL, MAVLINK_TYPE_FLOAT, 0, 24, offsetof(mavlink_optical_flow_rad_t, integrated_ygyro) }, \ |
---|
42 | { "integrated_zgyro", NULL, MAVLINK_TYPE_FLOAT, 0, 28, offsetof(mavlink_optical_flow_rad_t, integrated_zgyro) }, \ |
---|
43 | { "time_delta_distance_us", NULL, MAVLINK_TYPE_UINT32_T, 0, 32, offsetof(mavlink_optical_flow_rad_t, time_delta_distance_us) }, \ |
---|
44 | { "distance", NULL, MAVLINK_TYPE_FLOAT, 0, 36, offsetof(mavlink_optical_flow_rad_t, distance) }, \ |
---|
45 | { "temperature", NULL, MAVLINK_TYPE_INT16_T, 0, 40, offsetof(mavlink_optical_flow_rad_t, temperature) }, \ |
---|
46 | { "sensor_id", NULL, MAVLINK_TYPE_UINT8_T, 0, 42, offsetof(mavlink_optical_flow_rad_t, sensor_id) }, \ |
---|
47 | { "quality", NULL, MAVLINK_TYPE_UINT8_T, 0, 43, offsetof(mavlink_optical_flow_rad_t, quality) }, \ |
---|
48 | } \ |
---|
49 | } |
---|
50 | #else |
---|
51 | #define MAVLINK_MESSAGE_INFO_OPTICAL_FLOW_RAD { \ |
---|
52 | "OPTICAL_FLOW_RAD", \ |
---|
53 | 12, \ |
---|
54 | { { "time_usec", NULL, MAVLINK_TYPE_UINT64_T, 0, 0, offsetof(mavlink_optical_flow_rad_t, time_usec) }, \ |
---|
55 | { "integration_time_us", NULL, MAVLINK_TYPE_UINT32_T, 0, 8, offsetof(mavlink_optical_flow_rad_t, integration_time_us) }, \ |
---|
56 | { "integrated_x", NULL, MAVLINK_TYPE_FLOAT, 0, 12, offsetof(mavlink_optical_flow_rad_t, integrated_x) }, \ |
---|
57 | { "integrated_y", NULL, MAVLINK_TYPE_FLOAT, 0, 16, offsetof(mavlink_optical_flow_rad_t, integrated_y) }, \ |
---|
58 | { "integrated_xgyro", NULL, MAVLINK_TYPE_FLOAT, 0, 20, offsetof(mavlink_optical_flow_rad_t, integrated_xgyro) }, \ |
---|
59 | { "integrated_ygyro", NULL, MAVLINK_TYPE_FLOAT, 0, 24, offsetof(mavlink_optical_flow_rad_t, integrated_ygyro) }, \ |
---|
60 | { "integrated_zgyro", NULL, MAVLINK_TYPE_FLOAT, 0, 28, offsetof(mavlink_optical_flow_rad_t, integrated_zgyro) }, \ |
---|
61 | { "time_delta_distance_us", NULL, MAVLINK_TYPE_UINT32_T, 0, 32, offsetof(mavlink_optical_flow_rad_t, time_delta_distance_us) }, \ |
---|
62 | { "distance", NULL, MAVLINK_TYPE_FLOAT, 0, 36, offsetof(mavlink_optical_flow_rad_t, distance) }, \ |
---|
63 | { "temperature", NULL, MAVLINK_TYPE_INT16_T, 0, 40, offsetof(mavlink_optical_flow_rad_t, temperature) }, \ |
---|
64 | { "sensor_id", NULL, MAVLINK_TYPE_UINT8_T, 0, 42, offsetof(mavlink_optical_flow_rad_t, sensor_id) }, \ |
---|
65 | { "quality", NULL, MAVLINK_TYPE_UINT8_T, 0, 43, offsetof(mavlink_optical_flow_rad_t, quality) }, \ |
---|
66 | } \ |
---|
67 | } |
---|
68 | #endif |
---|
69 | |
---|
70 | /** |
---|
71 | * @brief Pack a optical_flow_rad message |
---|
72 | * @param system_id ID of this system |
---|
73 | * @param component_id ID of this component (e.g. 200 for IMU) |
---|
74 | * @param msg The MAVLink message to compress the data into |
---|
75 | * |
---|
76 | * @param time_usec Timestamp (microseconds, synced to UNIX time or since system boot) |
---|
77 | * @param sensor_id Sensor ID |
---|
78 | * @param integration_time_us Integration time in microseconds. Divide integrated_x and integrated_y by the integration time to obtain average flow. The integration time also indicates the. |
---|
79 | * @param integrated_x Flow in radians around X axis (Sensor RH rotation about the X axis induces a positive flow. Sensor linear motion along the positive Y axis induces a negative flow.) |
---|
80 | * @param integrated_y Flow in radians around Y axis (Sensor RH rotation about the Y axis induces a positive flow. Sensor linear motion along the positive X axis induces a positive flow.) |
---|
81 | * @param integrated_xgyro RH rotation around X axis (rad) |
---|
82 | * @param integrated_ygyro RH rotation around Y axis (rad) |
---|
83 | * @param integrated_zgyro RH rotation around Z axis (rad) |
---|
84 | * @param temperature Temperature * 100 in centi-degrees Celsius |
---|
85 | * @param quality Optical flow quality / confidence. 0: no valid flow, 255: maximum quality |
---|
86 | * @param time_delta_distance_us Time in microseconds since the distance was sampled. |
---|
87 | * @param distance Distance to the center of the flow field in meters. Positive value (including zero): distance known. Negative value: Unknown distance. |
---|
88 | * @return length of the message in bytes (excluding serial stream start sign) |
---|
89 | */ |
---|
90 | static inline uint16_t mavlink_msg_optical_flow_rad_pack(uint8_t system_id, uint8_t component_id, mavlink_message_t* msg, |
---|
91 | uint64_t time_usec, uint8_t sensor_id, uint32_t integration_time_us, float integrated_x, float integrated_y, float integrated_xgyro, float integrated_ygyro, float integrated_zgyro, int16_t temperature, uint8_t quality, uint32_t time_delta_distance_us, float distance) |
---|
92 | { |
---|
93 | #if MAVLINK_NEED_BYTE_SWAP || !MAVLINK_ALIGNED_FIELDS |
---|
94 | char buf[MAVLINK_MSG_ID_OPTICAL_FLOW_RAD_LEN]; |
---|
95 | _mav_put_uint64_t(buf, 0, time_usec); |
---|
96 | _mav_put_uint32_t(buf, 8, integration_time_us); |
---|
97 | _mav_put_float(buf, 12, integrated_x); |
---|
98 | _mav_put_float(buf, 16, integrated_y); |
---|
99 | _mav_put_float(buf, 20, integrated_xgyro); |
---|
100 | _mav_put_float(buf, 24, integrated_ygyro); |
---|
101 | _mav_put_float(buf, 28, integrated_zgyro); |
---|
102 | _mav_put_uint32_t(buf, 32, time_delta_distance_us); |
---|
103 | _mav_put_float(buf, 36, distance); |
---|
104 | _mav_put_int16_t(buf, 40, temperature); |
---|
105 | _mav_put_uint8_t(buf, 42, sensor_id); |
---|
106 | _mav_put_uint8_t(buf, 43, quality); |
---|
107 | |
---|
108 | memcpy(_MAV_PAYLOAD_NON_CONST(msg), buf, MAVLINK_MSG_ID_OPTICAL_FLOW_RAD_LEN); |
---|
109 | #else |
---|
110 | mavlink_optical_flow_rad_t packet; |
---|
111 | packet.time_usec = time_usec; |
---|
112 | packet.integration_time_us = integration_time_us; |
---|
113 | packet.integrated_x = integrated_x; |
---|
114 | packet.integrated_y = integrated_y; |
---|
115 | packet.integrated_xgyro = integrated_xgyro; |
---|
116 | packet.integrated_ygyro = integrated_ygyro; |
---|
117 | packet.integrated_zgyro = integrated_zgyro; |
---|
118 | packet.time_delta_distance_us = time_delta_distance_us; |
---|
119 | packet.distance = distance; |
---|
120 | packet.temperature = temperature; |
---|
121 | packet.sensor_id = sensor_id; |
---|
122 | packet.quality = quality; |
---|
123 | |
---|
124 | memcpy(_MAV_PAYLOAD_NON_CONST(msg), &packet, MAVLINK_MSG_ID_OPTICAL_FLOW_RAD_LEN); |
---|
125 | #endif |
---|
126 | |
---|
127 | msg->msgid = MAVLINK_MSG_ID_OPTICAL_FLOW_RAD; |
---|
128 | return mavlink_finalize_message(msg, system_id, component_id, MAVLINK_MSG_ID_OPTICAL_FLOW_RAD_MIN_LEN, MAVLINK_MSG_ID_OPTICAL_FLOW_RAD_LEN, MAVLINK_MSG_ID_OPTICAL_FLOW_RAD_CRC); |
---|
129 | } |
---|
130 | |
---|
131 | /** |
---|
132 | * @brief Pack a optical_flow_rad message on a channel |
---|
133 | * @param system_id ID of this system |
---|
134 | * @param component_id ID of this component (e.g. 200 for IMU) |
---|
135 | * @param chan The MAVLink channel this message will be sent over |
---|
136 | * @param msg The MAVLink message to compress the data into |
---|
137 | * @param time_usec Timestamp (microseconds, synced to UNIX time or since system boot) |
---|
138 | * @param sensor_id Sensor ID |
---|
139 | * @param integration_time_us Integration time in microseconds. Divide integrated_x and integrated_y by the integration time to obtain average flow. The integration time also indicates the. |
---|
140 | * @param integrated_x Flow in radians around X axis (Sensor RH rotation about the X axis induces a positive flow. Sensor linear motion along the positive Y axis induces a negative flow.) |
---|
141 | * @param integrated_y Flow in radians around Y axis (Sensor RH rotation about the Y axis induces a positive flow. Sensor linear motion along the positive X axis induces a positive flow.) |
---|
142 | * @param integrated_xgyro RH rotation around X axis (rad) |
---|
143 | * @param integrated_ygyro RH rotation around Y axis (rad) |
---|
144 | * @param integrated_zgyro RH rotation around Z axis (rad) |
---|
145 | * @param temperature Temperature * 100 in centi-degrees Celsius |
---|
146 | * @param quality Optical flow quality / confidence. 0: no valid flow, 255: maximum quality |
---|
147 | * @param time_delta_distance_us Time in microseconds since the distance was sampled. |
---|
148 | * @param distance Distance to the center of the flow field in meters. Positive value (including zero): distance known. Negative value: Unknown distance. |
---|
149 | * @return length of the message in bytes (excluding serial stream start sign) |
---|
150 | */ |
---|
151 | static inline uint16_t mavlink_msg_optical_flow_rad_pack_chan(uint8_t system_id, uint8_t component_id, uint8_t chan, |
---|
152 | mavlink_message_t* msg, |
---|
153 | uint64_t time_usec,uint8_t sensor_id,uint32_t integration_time_us,float integrated_x,float integrated_y,float integrated_xgyro,float integrated_ygyro,float integrated_zgyro,int16_t temperature,uint8_t quality,uint32_t time_delta_distance_us,float distance) |
---|
154 | { |
---|
155 | #if MAVLINK_NEED_BYTE_SWAP || !MAVLINK_ALIGNED_FIELDS |
---|
156 | char buf[MAVLINK_MSG_ID_OPTICAL_FLOW_RAD_LEN]; |
---|
157 | _mav_put_uint64_t(buf, 0, time_usec); |
---|
158 | _mav_put_uint32_t(buf, 8, integration_time_us); |
---|
159 | _mav_put_float(buf, 12, integrated_x); |
---|
160 | _mav_put_float(buf, 16, integrated_y); |
---|
161 | _mav_put_float(buf, 20, integrated_xgyro); |
---|
162 | _mav_put_float(buf, 24, integrated_ygyro); |
---|
163 | _mav_put_float(buf, 28, integrated_zgyro); |
---|
164 | _mav_put_uint32_t(buf, 32, time_delta_distance_us); |
---|
165 | _mav_put_float(buf, 36, distance); |
---|
166 | _mav_put_int16_t(buf, 40, temperature); |
---|
167 | _mav_put_uint8_t(buf, 42, sensor_id); |
---|
168 | _mav_put_uint8_t(buf, 43, quality); |
---|
169 | |
---|
170 | memcpy(_MAV_PAYLOAD_NON_CONST(msg), buf, MAVLINK_MSG_ID_OPTICAL_FLOW_RAD_LEN); |
---|
171 | #else |
---|
172 | mavlink_optical_flow_rad_t packet; |
---|
173 | packet.time_usec = time_usec; |
---|
174 | packet.integration_time_us = integration_time_us; |
---|
175 | packet.integrated_x = integrated_x; |
---|
176 | packet.integrated_y = integrated_y; |
---|
177 | packet.integrated_xgyro = integrated_xgyro; |
---|
178 | packet.integrated_ygyro = integrated_ygyro; |
---|
179 | packet.integrated_zgyro = integrated_zgyro; |
---|
180 | packet.time_delta_distance_us = time_delta_distance_us; |
---|
181 | packet.distance = distance; |
---|
182 | packet.temperature = temperature; |
---|
183 | packet.sensor_id = sensor_id; |
---|
184 | packet.quality = quality; |
---|
185 | |
---|
186 | memcpy(_MAV_PAYLOAD_NON_CONST(msg), &packet, MAVLINK_MSG_ID_OPTICAL_FLOW_RAD_LEN); |
---|
187 | #endif |
---|
188 | |
---|
189 | msg->msgid = MAVLINK_MSG_ID_OPTICAL_FLOW_RAD; |
---|
190 | return mavlink_finalize_message_chan(msg, system_id, component_id, chan, MAVLINK_MSG_ID_OPTICAL_FLOW_RAD_MIN_LEN, MAVLINK_MSG_ID_OPTICAL_FLOW_RAD_LEN, MAVLINK_MSG_ID_OPTICAL_FLOW_RAD_CRC); |
---|
191 | } |
---|
192 | |
---|
193 | /** |
---|
194 | * @brief Encode a optical_flow_rad struct |
---|
195 | * |
---|
196 | * @param system_id ID of this system |
---|
197 | * @param component_id ID of this component (e.g. 200 for IMU) |
---|
198 | * @param msg The MAVLink message to compress the data into |
---|
199 | * @param optical_flow_rad C-struct to read the message contents from |
---|
200 | */ |
---|
201 | static inline uint16_t mavlink_msg_optical_flow_rad_encode(uint8_t system_id, uint8_t component_id, mavlink_message_t* msg, const mavlink_optical_flow_rad_t* optical_flow_rad) |
---|
202 | { |
---|
203 | return mavlink_msg_optical_flow_rad_pack(system_id, component_id, msg, optical_flow_rad->time_usec, optical_flow_rad->sensor_id, optical_flow_rad->integration_time_us, optical_flow_rad->integrated_x, optical_flow_rad->integrated_y, optical_flow_rad->integrated_xgyro, optical_flow_rad->integrated_ygyro, optical_flow_rad->integrated_zgyro, optical_flow_rad->temperature, optical_flow_rad->quality, optical_flow_rad->time_delta_distance_us, optical_flow_rad->distance); |
---|
204 | } |
---|
205 | |
---|
206 | /** |
---|
207 | * @brief Encode a optical_flow_rad struct on a channel |
---|
208 | * |
---|
209 | * @param system_id ID of this system |
---|
210 | * @param component_id ID of this component (e.g. 200 for IMU) |
---|
211 | * @param chan The MAVLink channel this message will be sent over |
---|
212 | * @param msg The MAVLink message to compress the data into |
---|
213 | * @param optical_flow_rad C-struct to read the message contents from |
---|
214 | */ |
---|
215 | static inline uint16_t mavlink_msg_optical_flow_rad_encode_chan(uint8_t system_id, uint8_t component_id, uint8_t chan, mavlink_message_t* msg, const mavlink_optical_flow_rad_t* optical_flow_rad) |
---|
216 | { |
---|
217 | return mavlink_msg_optical_flow_rad_pack_chan(system_id, component_id, chan, msg, optical_flow_rad->time_usec, optical_flow_rad->sensor_id, optical_flow_rad->integration_time_us, optical_flow_rad->integrated_x, optical_flow_rad->integrated_y, optical_flow_rad->integrated_xgyro, optical_flow_rad->integrated_ygyro, optical_flow_rad->integrated_zgyro, optical_flow_rad->temperature, optical_flow_rad->quality, optical_flow_rad->time_delta_distance_us, optical_flow_rad->distance); |
---|
218 | } |
---|
219 | |
---|
220 | /** |
---|
221 | * @brief Send a optical_flow_rad message |
---|
222 | * @param chan MAVLink channel to send the message |
---|
223 | * |
---|
224 | * @param time_usec Timestamp (microseconds, synced to UNIX time or since system boot) |
---|
225 | * @param sensor_id Sensor ID |
---|
226 | * @param integration_time_us Integration time in microseconds. Divide integrated_x and integrated_y by the integration time to obtain average flow. The integration time also indicates the. |
---|
227 | * @param integrated_x Flow in radians around X axis (Sensor RH rotation about the X axis induces a positive flow. Sensor linear motion along the positive Y axis induces a negative flow.) |
---|
228 | * @param integrated_y Flow in radians around Y axis (Sensor RH rotation about the Y axis induces a positive flow. Sensor linear motion along the positive X axis induces a positive flow.) |
---|
229 | * @param integrated_xgyro RH rotation around X axis (rad) |
---|
230 | * @param integrated_ygyro RH rotation around Y axis (rad) |
---|
231 | * @param integrated_zgyro RH rotation around Z axis (rad) |
---|
232 | * @param temperature Temperature * 100 in centi-degrees Celsius |
---|
233 | * @param quality Optical flow quality / confidence. 0: no valid flow, 255: maximum quality |
---|
234 | * @param time_delta_distance_us Time in microseconds since the distance was sampled. |
---|
235 | * @param distance Distance to the center of the flow field in meters. Positive value (including zero): distance known. Negative value: Unknown distance. |
---|
236 | */ |
---|
237 | #ifdef MAVLINK_USE_CONVENIENCE_FUNCTIONS |
---|
238 | |
---|
239 | static inline void mavlink_msg_optical_flow_rad_send(mavlink_channel_t chan, uint64_t time_usec, uint8_t sensor_id, uint32_t integration_time_us, float integrated_x, float integrated_y, float integrated_xgyro, float integrated_ygyro, float integrated_zgyro, int16_t temperature, uint8_t quality, uint32_t time_delta_distance_us, float distance) |
---|
240 | { |
---|
241 | #if MAVLINK_NEED_BYTE_SWAP || !MAVLINK_ALIGNED_FIELDS |
---|
242 | char buf[MAVLINK_MSG_ID_OPTICAL_FLOW_RAD_LEN]; |
---|
243 | _mav_put_uint64_t(buf, 0, time_usec); |
---|
244 | _mav_put_uint32_t(buf, 8, integration_time_us); |
---|
245 | _mav_put_float(buf, 12, integrated_x); |
---|
246 | _mav_put_float(buf, 16, integrated_y); |
---|
247 | _mav_put_float(buf, 20, integrated_xgyro); |
---|
248 | _mav_put_float(buf, 24, integrated_ygyro); |
---|
249 | _mav_put_float(buf, 28, integrated_zgyro); |
---|
250 | _mav_put_uint32_t(buf, 32, time_delta_distance_us); |
---|
251 | _mav_put_float(buf, 36, distance); |
---|
252 | _mav_put_int16_t(buf, 40, temperature); |
---|
253 | _mav_put_uint8_t(buf, 42, sensor_id); |
---|
254 | _mav_put_uint8_t(buf, 43, quality); |
---|
255 | |
---|
256 | _mav_finalize_message_chan_send(chan, MAVLINK_MSG_ID_OPTICAL_FLOW_RAD, buf, MAVLINK_MSG_ID_OPTICAL_FLOW_RAD_MIN_LEN, MAVLINK_MSG_ID_OPTICAL_FLOW_RAD_LEN, MAVLINK_MSG_ID_OPTICAL_FLOW_RAD_CRC); |
---|
257 | #else |
---|
258 | mavlink_optical_flow_rad_t packet; |
---|
259 | packet.time_usec = time_usec; |
---|
260 | packet.integration_time_us = integration_time_us; |
---|
261 | packet.integrated_x = integrated_x; |
---|
262 | packet.integrated_y = integrated_y; |
---|
263 | packet.integrated_xgyro = integrated_xgyro; |
---|
264 | packet.integrated_ygyro = integrated_ygyro; |
---|
265 | packet.integrated_zgyro = integrated_zgyro; |
---|
266 | packet.time_delta_distance_us = time_delta_distance_us; |
---|
267 | packet.distance = distance; |
---|
268 | packet.temperature = temperature; |
---|
269 | packet.sensor_id = sensor_id; |
---|
270 | packet.quality = quality; |
---|
271 | |
---|
272 | _mav_finalize_message_chan_send(chan, MAVLINK_MSG_ID_OPTICAL_FLOW_RAD, (const char *)&packet, MAVLINK_MSG_ID_OPTICAL_FLOW_RAD_MIN_LEN, MAVLINK_MSG_ID_OPTICAL_FLOW_RAD_LEN, MAVLINK_MSG_ID_OPTICAL_FLOW_RAD_CRC); |
---|
273 | #endif |
---|
274 | } |
---|
275 | |
---|
276 | /** |
---|
277 | * @brief Send a optical_flow_rad message |
---|
278 | * @param chan MAVLink channel to send the message |
---|
279 | * @param struct The MAVLink struct to serialize |
---|
280 | */ |
---|
281 | static inline void mavlink_msg_optical_flow_rad_send_struct(mavlink_channel_t chan, const mavlink_optical_flow_rad_t* optical_flow_rad) |
---|
282 | { |
---|
283 | #if MAVLINK_NEED_BYTE_SWAP || !MAVLINK_ALIGNED_FIELDS |
---|
284 | mavlink_msg_optical_flow_rad_send(chan, optical_flow_rad->time_usec, optical_flow_rad->sensor_id, optical_flow_rad->integration_time_us, optical_flow_rad->integrated_x, optical_flow_rad->integrated_y, optical_flow_rad->integrated_xgyro, optical_flow_rad->integrated_ygyro, optical_flow_rad->integrated_zgyro, optical_flow_rad->temperature, optical_flow_rad->quality, optical_flow_rad->time_delta_distance_us, optical_flow_rad->distance); |
---|
285 | #else |
---|
286 | _mav_finalize_message_chan_send(chan, MAVLINK_MSG_ID_OPTICAL_FLOW_RAD, (const char *)optical_flow_rad, MAVLINK_MSG_ID_OPTICAL_FLOW_RAD_MIN_LEN, MAVLINK_MSG_ID_OPTICAL_FLOW_RAD_LEN, MAVLINK_MSG_ID_OPTICAL_FLOW_RAD_CRC); |
---|
287 | #endif |
---|
288 | } |
---|
289 | |
---|
290 | #if MAVLINK_MSG_ID_OPTICAL_FLOW_RAD_LEN <= MAVLINK_MAX_PAYLOAD_LEN |
---|
291 | /* |
---|
292 | This varient of _send() can be used to save stack space by re-using |
---|
293 | memory from the receive buffer. The caller provides a |
---|
294 | mavlink_message_t which is the size of a full mavlink message. This |
---|
295 | is usually the receive buffer for the channel, and allows a reply to an |
---|
296 | incoming message with minimum stack space usage. |
---|
297 | */ |
---|
298 | static inline void mavlink_msg_optical_flow_rad_send_buf(mavlink_message_t *msgbuf, mavlink_channel_t chan, uint64_t time_usec, uint8_t sensor_id, uint32_t integration_time_us, float integrated_x, float integrated_y, float integrated_xgyro, float integrated_ygyro, float integrated_zgyro, int16_t temperature, uint8_t quality, uint32_t time_delta_distance_us, float distance) |
---|
299 | { |
---|
300 | #if MAVLINK_NEED_BYTE_SWAP || !MAVLINK_ALIGNED_FIELDS |
---|
301 | char *buf = (char *)msgbuf; |
---|
302 | _mav_put_uint64_t(buf, 0, time_usec); |
---|
303 | _mav_put_uint32_t(buf, 8, integration_time_us); |
---|
304 | _mav_put_float(buf, 12, integrated_x); |
---|
305 | _mav_put_float(buf, 16, integrated_y); |
---|
306 | _mav_put_float(buf, 20, integrated_xgyro); |
---|
307 | _mav_put_float(buf, 24, integrated_ygyro); |
---|
308 | _mav_put_float(buf, 28, integrated_zgyro); |
---|
309 | _mav_put_uint32_t(buf, 32, time_delta_distance_us); |
---|
310 | _mav_put_float(buf, 36, distance); |
---|
311 | _mav_put_int16_t(buf, 40, temperature); |
---|
312 | _mav_put_uint8_t(buf, 42, sensor_id); |
---|
313 | _mav_put_uint8_t(buf, 43, quality); |
---|
314 | |
---|
315 | _mav_finalize_message_chan_send(chan, MAVLINK_MSG_ID_OPTICAL_FLOW_RAD, buf, MAVLINK_MSG_ID_OPTICAL_FLOW_RAD_MIN_LEN, MAVLINK_MSG_ID_OPTICAL_FLOW_RAD_LEN, MAVLINK_MSG_ID_OPTICAL_FLOW_RAD_CRC); |
---|
316 | #else |
---|
317 | mavlink_optical_flow_rad_t *packet = (mavlink_optical_flow_rad_t *)msgbuf; |
---|
318 | packet->time_usec = time_usec; |
---|
319 | packet->integration_time_us = integration_time_us; |
---|
320 | packet->integrated_x = integrated_x; |
---|
321 | packet->integrated_y = integrated_y; |
---|
322 | packet->integrated_xgyro = integrated_xgyro; |
---|
323 | packet->integrated_ygyro = integrated_ygyro; |
---|
324 | packet->integrated_zgyro = integrated_zgyro; |
---|
325 | packet->time_delta_distance_us = time_delta_distance_us; |
---|
326 | packet->distance = distance; |
---|
327 | packet->temperature = temperature; |
---|
328 | packet->sensor_id = sensor_id; |
---|
329 | packet->quality = quality; |
---|
330 | |
---|
331 | _mav_finalize_message_chan_send(chan, MAVLINK_MSG_ID_OPTICAL_FLOW_RAD, (const char *)packet, MAVLINK_MSG_ID_OPTICAL_FLOW_RAD_MIN_LEN, MAVLINK_MSG_ID_OPTICAL_FLOW_RAD_LEN, MAVLINK_MSG_ID_OPTICAL_FLOW_RAD_CRC); |
---|
332 | #endif |
---|
333 | } |
---|
334 | #endif |
---|
335 | |
---|
336 | #endif |
---|
337 | |
---|
338 | // MESSAGE OPTICAL_FLOW_RAD UNPACKING |
---|
339 | |
---|
340 | |
---|
341 | /** |
---|
342 | * @brief Get field time_usec from optical_flow_rad message |
---|
343 | * |
---|
344 | * @return Timestamp (microseconds, synced to UNIX time or since system boot) |
---|
345 | */ |
---|
346 | static inline uint64_t mavlink_msg_optical_flow_rad_get_time_usec(const mavlink_message_t* msg) |
---|
347 | { |
---|
348 | return _MAV_RETURN_uint64_t(msg, 0); |
---|
349 | } |
---|
350 | |
---|
351 | /** |
---|
352 | * @brief Get field sensor_id from optical_flow_rad message |
---|
353 | * |
---|
354 | * @return Sensor ID |
---|
355 | */ |
---|
356 | static inline uint8_t mavlink_msg_optical_flow_rad_get_sensor_id(const mavlink_message_t* msg) |
---|
357 | { |
---|
358 | return _MAV_RETURN_uint8_t(msg, 42); |
---|
359 | } |
---|
360 | |
---|
361 | /** |
---|
362 | * @brief Get field integration_time_us from optical_flow_rad message |
---|
363 | * |
---|
364 | * @return Integration time in microseconds. Divide integrated_x and integrated_y by the integration time to obtain average flow. The integration time also indicates the. |
---|
365 | */ |
---|
366 | static inline uint32_t mavlink_msg_optical_flow_rad_get_integration_time_us(const mavlink_message_t* msg) |
---|
367 | { |
---|
368 | return _MAV_RETURN_uint32_t(msg, 8); |
---|
369 | } |
---|
370 | |
---|
371 | /** |
---|
372 | * @brief Get field integrated_x from optical_flow_rad message |
---|
373 | * |
---|
374 | * @return Flow in radians around X axis (Sensor RH rotation about the X axis induces a positive flow. Sensor linear motion along the positive Y axis induces a negative flow.) |
---|
375 | */ |
---|
376 | static inline float mavlink_msg_optical_flow_rad_get_integrated_x(const mavlink_message_t* msg) |
---|
377 | { |
---|
378 | return _MAV_RETURN_float(msg, 12); |
---|
379 | } |
---|
380 | |
---|
381 | /** |
---|
382 | * @brief Get field integrated_y from optical_flow_rad message |
---|
383 | * |
---|
384 | * @return Flow in radians around Y axis (Sensor RH rotation about the Y axis induces a positive flow. Sensor linear motion along the positive X axis induces a positive flow.) |
---|
385 | */ |
---|
386 | static inline float mavlink_msg_optical_flow_rad_get_integrated_y(const mavlink_message_t* msg) |
---|
387 | { |
---|
388 | return _MAV_RETURN_float(msg, 16); |
---|
389 | } |
---|
390 | |
---|
391 | /** |
---|
392 | * @brief Get field integrated_xgyro from optical_flow_rad message |
---|
393 | * |
---|
394 | * @return RH rotation around X axis (rad) |
---|
395 | */ |
---|
396 | static inline float mavlink_msg_optical_flow_rad_get_integrated_xgyro(const mavlink_message_t* msg) |
---|
397 | { |
---|
398 | return _MAV_RETURN_float(msg, 20); |
---|
399 | } |
---|
400 | |
---|
401 | /** |
---|
402 | * @brief Get field integrated_ygyro from optical_flow_rad message |
---|
403 | * |
---|
404 | * @return RH rotation around Y axis (rad) |
---|
405 | */ |
---|
406 | static inline float mavlink_msg_optical_flow_rad_get_integrated_ygyro(const mavlink_message_t* msg) |
---|
407 | { |
---|
408 | return _MAV_RETURN_float(msg, 24); |
---|
409 | } |
---|
410 | |
---|
411 | /** |
---|
412 | * @brief Get field integrated_zgyro from optical_flow_rad message |
---|
413 | * |
---|
414 | * @return RH rotation around Z axis (rad) |
---|
415 | */ |
---|
416 | static inline float mavlink_msg_optical_flow_rad_get_integrated_zgyro(const mavlink_message_t* msg) |
---|
417 | { |
---|
418 | return _MAV_RETURN_float(msg, 28); |
---|
419 | } |
---|
420 | |
---|
421 | /** |
---|
422 | * @brief Get field temperature from optical_flow_rad message |
---|
423 | * |
---|
424 | * @return Temperature * 100 in centi-degrees Celsius |
---|
425 | */ |
---|
426 | static inline int16_t mavlink_msg_optical_flow_rad_get_temperature(const mavlink_message_t* msg) |
---|
427 | { |
---|
428 | return _MAV_RETURN_int16_t(msg, 40); |
---|
429 | } |
---|
430 | |
---|
431 | /** |
---|
432 | * @brief Get field quality from optical_flow_rad message |
---|
433 | * |
---|
434 | * @return Optical flow quality / confidence. 0: no valid flow, 255: maximum quality |
---|
435 | */ |
---|
436 | static inline uint8_t mavlink_msg_optical_flow_rad_get_quality(const mavlink_message_t* msg) |
---|
437 | { |
---|
438 | return _MAV_RETURN_uint8_t(msg, 43); |
---|
439 | } |
---|
440 | |
---|
441 | /** |
---|
442 | * @brief Get field time_delta_distance_us from optical_flow_rad message |
---|
443 | * |
---|
444 | * @return Time in microseconds since the distance was sampled. |
---|
445 | */ |
---|
446 | static inline uint32_t mavlink_msg_optical_flow_rad_get_time_delta_distance_us(const mavlink_message_t* msg) |
---|
447 | { |
---|
448 | return _MAV_RETURN_uint32_t(msg, 32); |
---|
449 | } |
---|
450 | |
---|
451 | /** |
---|
452 | * @brief Get field distance from optical_flow_rad message |
---|
453 | * |
---|
454 | * @return Distance to the center of the flow field in meters. Positive value (including zero): distance known. Negative value: Unknown distance. |
---|
455 | */ |
---|
456 | static inline float mavlink_msg_optical_flow_rad_get_distance(const mavlink_message_t* msg) |
---|
457 | { |
---|
458 | return _MAV_RETURN_float(msg, 36); |
---|
459 | } |
---|
460 | |
---|
461 | /** |
---|
462 | * @brief Decode a optical_flow_rad message into a struct |
---|
463 | * |
---|
464 | * @param msg The message to decode |
---|
465 | * @param optical_flow_rad C-struct to decode the message contents into |
---|
466 | */ |
---|
467 | static inline void mavlink_msg_optical_flow_rad_decode(const mavlink_message_t* msg, mavlink_optical_flow_rad_t* optical_flow_rad) |
---|
468 | { |
---|
469 | #if MAVLINK_NEED_BYTE_SWAP || !MAVLINK_ALIGNED_FIELDS |
---|
470 | optical_flow_rad->time_usec = mavlink_msg_optical_flow_rad_get_time_usec(msg); |
---|
471 | optical_flow_rad->integration_time_us = mavlink_msg_optical_flow_rad_get_integration_time_us(msg); |
---|
472 | optical_flow_rad->integrated_x = mavlink_msg_optical_flow_rad_get_integrated_x(msg); |
---|
473 | optical_flow_rad->integrated_y = mavlink_msg_optical_flow_rad_get_integrated_y(msg); |
---|
474 | optical_flow_rad->integrated_xgyro = mavlink_msg_optical_flow_rad_get_integrated_xgyro(msg); |
---|
475 | optical_flow_rad->integrated_ygyro = mavlink_msg_optical_flow_rad_get_integrated_ygyro(msg); |
---|
476 | optical_flow_rad->integrated_zgyro = mavlink_msg_optical_flow_rad_get_integrated_zgyro(msg); |
---|
477 | optical_flow_rad->time_delta_distance_us = mavlink_msg_optical_flow_rad_get_time_delta_distance_us(msg); |
---|
478 | optical_flow_rad->distance = mavlink_msg_optical_flow_rad_get_distance(msg); |
---|
479 | optical_flow_rad->temperature = mavlink_msg_optical_flow_rad_get_temperature(msg); |
---|
480 | optical_flow_rad->sensor_id = mavlink_msg_optical_flow_rad_get_sensor_id(msg); |
---|
481 | optical_flow_rad->quality = mavlink_msg_optical_flow_rad_get_quality(msg); |
---|
482 | #else |
---|
483 | uint8_t len = msg->len < MAVLINK_MSG_ID_OPTICAL_FLOW_RAD_LEN? msg->len : MAVLINK_MSG_ID_OPTICAL_FLOW_RAD_LEN; |
---|
484 | memset(optical_flow_rad, 0, MAVLINK_MSG_ID_OPTICAL_FLOW_RAD_LEN); |
---|
485 | memcpy(optical_flow_rad, _MAV_PAYLOAD(msg), len); |
---|
486 | #endif |
---|
487 | } |
---|