1 | #ifndef _MAVLINK_CONVERSIONS_H_ |
---|
2 | #define _MAVLINK_CONVERSIONS_H_ |
---|
3 | |
---|
4 | /* enable math defines on Windows */ |
---|
5 | #ifdef _MSC_VER |
---|
6 | #ifndef _USE_MATH_DEFINES |
---|
7 | #define _USE_MATH_DEFINES |
---|
8 | #endif |
---|
9 | #endif |
---|
10 | #include <math.h> |
---|
11 | |
---|
12 | #ifndef M_PI_2 |
---|
13 | #define M_PI_2 ((float)asin(1)) |
---|
14 | #endif |
---|
15 | |
---|
16 | /** |
---|
17 | * @file mavlink_conversions.h |
---|
18 | * |
---|
19 | * These conversion functions follow the NASA rotation standards definition file |
---|
20 | * available online. |
---|
21 | * |
---|
22 | * Their intent is to lower the barrier for MAVLink adopters to use gimbal-lock free |
---|
23 | * (both rotation matrices, sometimes called DCM, and quaternions are gimbal-lock free) |
---|
24 | * rotation representations. Euler angles (roll, pitch, yaw) will be phased out of the |
---|
25 | * protocol as widely as possible. |
---|
26 | * |
---|
27 | * @author James Goppert |
---|
28 | * @author Thomas Gubler <thomasgubler@gmail.com> |
---|
29 | */ |
---|
30 | |
---|
31 | |
---|
32 | /** |
---|
33 | * Converts a quaternion to a rotation matrix |
---|
34 | * |
---|
35 | * @param quaternion a [w, x, y, z] ordered quaternion (null-rotation being 1 0 0 0) |
---|
36 | * @param dcm a 3x3 rotation matrix |
---|
37 | */ |
---|
38 | MAVLINK_HELPER void mavlink_quaternion_to_dcm(const float quaternion[4], float dcm[3][3]) |
---|
39 | { |
---|
40 | double a = quaternion[0]; |
---|
41 | double b = quaternion[1]; |
---|
42 | double c = quaternion[2]; |
---|
43 | double d = quaternion[3]; |
---|
44 | double aSq = a * a; |
---|
45 | double bSq = b * b; |
---|
46 | double cSq = c * c; |
---|
47 | double dSq = d * d; |
---|
48 | dcm[0][0] = aSq + bSq - cSq - dSq; |
---|
49 | dcm[0][1] = 2 * (b * c - a * d); |
---|
50 | dcm[0][2] = 2 * (a * c + b * d); |
---|
51 | dcm[1][0] = 2 * (b * c + a * d); |
---|
52 | dcm[1][1] = aSq - bSq + cSq - dSq; |
---|
53 | dcm[1][2] = 2 * (c * d - a * b); |
---|
54 | dcm[2][0] = 2 * (b * d - a * c); |
---|
55 | dcm[2][1] = 2 * (a * b + c * d); |
---|
56 | dcm[2][2] = aSq - bSq - cSq + dSq; |
---|
57 | } |
---|
58 | |
---|
59 | |
---|
60 | /** |
---|
61 | * Converts a rotation matrix to euler angles |
---|
62 | * |
---|
63 | * @param dcm a 3x3 rotation matrix |
---|
64 | * @param roll the roll angle in radians |
---|
65 | * @param pitch the pitch angle in radians |
---|
66 | * @param yaw the yaw angle in radians |
---|
67 | */ |
---|
68 | MAVLINK_HELPER void mavlink_dcm_to_euler(const float dcm[3][3], float* roll, float* pitch, float* yaw) |
---|
69 | { |
---|
70 | float phi, theta, psi; |
---|
71 | theta = asin(-dcm[2][0]); |
---|
72 | |
---|
73 | if (fabsf(theta - (float)M_PI_2) < 1.0e-3f) { |
---|
74 | phi = 0.0f; |
---|
75 | psi = (atan2f(dcm[1][2] - dcm[0][1], |
---|
76 | dcm[0][2] + dcm[1][1]) + phi); |
---|
77 | |
---|
78 | } else if (fabsf(theta + (float)M_PI_2) < 1.0e-3f) { |
---|
79 | phi = 0.0f; |
---|
80 | psi = atan2f(dcm[1][2] - dcm[0][1], |
---|
81 | dcm[0][2] + dcm[1][1] - phi); |
---|
82 | |
---|
83 | } else { |
---|
84 | phi = atan2f(dcm[2][1], dcm[2][2]); |
---|
85 | psi = atan2f(dcm[1][0], dcm[0][0]); |
---|
86 | } |
---|
87 | |
---|
88 | *roll = phi; |
---|
89 | *pitch = theta; |
---|
90 | *yaw = psi; |
---|
91 | } |
---|
92 | |
---|
93 | |
---|
94 | /** |
---|
95 | * Converts a quaternion to euler angles |
---|
96 | * |
---|
97 | * @param quaternion a [w, x, y, z] ordered quaternion (null-rotation being 1 0 0 0) |
---|
98 | * @param roll the roll angle in radians |
---|
99 | * @param pitch the pitch angle in radians |
---|
100 | * @param yaw the yaw angle in radians |
---|
101 | */ |
---|
102 | MAVLINK_HELPER void mavlink_quaternion_to_euler(const float quaternion[4], float* roll, float* pitch, float* yaw) |
---|
103 | { |
---|
104 | float dcm[3][3]; |
---|
105 | mavlink_quaternion_to_dcm(quaternion, dcm); |
---|
106 | mavlink_dcm_to_euler((const float(*)[3])dcm, roll, pitch, yaw); |
---|
107 | } |
---|
108 | |
---|
109 | |
---|
110 | /** |
---|
111 | * Converts euler angles to a quaternion |
---|
112 | * |
---|
113 | * @param roll the roll angle in radians |
---|
114 | * @param pitch the pitch angle in radians |
---|
115 | * @param yaw the yaw angle in radians |
---|
116 | * @param quaternion a [w, x, y, z] ordered quaternion (null-rotation being 1 0 0 0) |
---|
117 | */ |
---|
118 | MAVLINK_HELPER void mavlink_euler_to_quaternion(float roll, float pitch, float yaw, float quaternion[4]) |
---|
119 | { |
---|
120 | float cosPhi_2 = cosf(roll / 2); |
---|
121 | float sinPhi_2 = sinf(roll / 2); |
---|
122 | float cosTheta_2 = cosf(pitch / 2); |
---|
123 | float sinTheta_2 = sinf(pitch / 2); |
---|
124 | float cosPsi_2 = cosf(yaw / 2); |
---|
125 | float sinPsi_2 = sinf(yaw / 2); |
---|
126 | quaternion[0] = (cosPhi_2 * cosTheta_2 * cosPsi_2 + |
---|
127 | sinPhi_2 * sinTheta_2 * sinPsi_2); |
---|
128 | quaternion[1] = (sinPhi_2 * cosTheta_2 * cosPsi_2 - |
---|
129 | cosPhi_2 * sinTheta_2 * sinPsi_2); |
---|
130 | quaternion[2] = (cosPhi_2 * sinTheta_2 * cosPsi_2 + |
---|
131 | sinPhi_2 * cosTheta_2 * sinPsi_2); |
---|
132 | quaternion[3] = (cosPhi_2 * cosTheta_2 * sinPsi_2 - |
---|
133 | sinPhi_2 * sinTheta_2 * cosPsi_2); |
---|
134 | } |
---|
135 | |
---|
136 | |
---|
137 | /** |
---|
138 | * Converts a rotation matrix to a quaternion |
---|
139 | * Reference: |
---|
140 | * - Shoemake, Quaternions, |
---|
141 | * http://www.cs.ucr.edu/~vbz/resources/quatut.pdf |
---|
142 | * |
---|
143 | * @param dcm a 3x3 rotation matrix |
---|
144 | * @param quaternion a [w, x, y, z] ordered quaternion (null-rotation being 1 0 0 0) |
---|
145 | */ |
---|
146 | MAVLINK_HELPER void mavlink_dcm_to_quaternion(const float dcm[3][3], float quaternion[4]) |
---|
147 | { |
---|
148 | float tr = dcm[0][0] + dcm[1][1] + dcm[2][2]; |
---|
149 | if (tr > 0.0f) { |
---|
150 | float s = sqrtf(tr + 1.0f); |
---|
151 | quaternion[0] = s * 0.5f; |
---|
152 | s = 0.5f / s; |
---|
153 | quaternion[1] = (dcm[2][1] - dcm[1][2]) * s; |
---|
154 | quaternion[2] = (dcm[0][2] - dcm[2][0]) * s; |
---|
155 | quaternion[3] = (dcm[1][0] - dcm[0][1]) * s; |
---|
156 | } else { |
---|
157 | /* Find maximum diagonal element in dcm |
---|
158 | * store index in dcm_i */ |
---|
159 | int dcm_i = 0; |
---|
160 | int i; |
---|
161 | for (i = 1; i < 3; i++) { |
---|
162 | if (dcm[i][i] > dcm[dcm_i][dcm_i]) { |
---|
163 | dcm_i = i; |
---|
164 | } |
---|
165 | } |
---|
166 | |
---|
167 | int dcm_j = (dcm_i + 1) % 3; |
---|
168 | int dcm_k = (dcm_i + 2) % 3; |
---|
169 | |
---|
170 | float s = sqrtf((dcm[dcm_i][dcm_i] - dcm[dcm_j][dcm_j] - |
---|
171 | dcm[dcm_k][dcm_k]) + 1.0f); |
---|
172 | quaternion[dcm_i + 1] = s * 0.5f; |
---|
173 | s = 0.5f / s; |
---|
174 | quaternion[dcm_j + 1] = (dcm[dcm_i][dcm_j] + dcm[dcm_j][dcm_i]) * s; |
---|
175 | quaternion[dcm_k + 1] = (dcm[dcm_k][dcm_i] + dcm[dcm_i][dcm_k]) * s; |
---|
176 | quaternion[0] = (dcm[dcm_k][dcm_j] - dcm[dcm_j][dcm_k]) * s; |
---|
177 | } |
---|
178 | } |
---|
179 | |
---|
180 | |
---|
181 | /** |
---|
182 | * Converts euler angles to a rotation matrix |
---|
183 | * |
---|
184 | * @param roll the roll angle in radians |
---|
185 | * @param pitch the pitch angle in radians |
---|
186 | * @param yaw the yaw angle in radians |
---|
187 | * @param dcm a 3x3 rotation matrix |
---|
188 | */ |
---|
189 | MAVLINK_HELPER void mavlink_euler_to_dcm(float roll, float pitch, float yaw, float dcm[3][3]) |
---|
190 | { |
---|
191 | float cosPhi = cosf(roll); |
---|
192 | float sinPhi = sinf(roll); |
---|
193 | float cosThe = cosf(pitch); |
---|
194 | float sinThe = sinf(pitch); |
---|
195 | float cosPsi = cosf(yaw); |
---|
196 | float sinPsi = sinf(yaw); |
---|
197 | |
---|
198 | dcm[0][0] = cosThe * cosPsi; |
---|
199 | dcm[0][1] = -cosPhi * sinPsi + sinPhi * sinThe * cosPsi; |
---|
200 | dcm[0][2] = sinPhi * sinPsi + cosPhi * sinThe * cosPsi; |
---|
201 | |
---|
202 | dcm[1][0] = cosThe * sinPsi; |
---|
203 | dcm[1][1] = cosPhi * cosPsi + sinPhi * sinThe * sinPsi; |
---|
204 | dcm[1][2] = -sinPhi * cosPsi + cosPhi * sinThe * sinPsi; |
---|
205 | |
---|
206 | dcm[2][0] = -sinThe; |
---|
207 | dcm[2][1] = sinPhi * cosThe; |
---|
208 | dcm[2][2] = cosPhi * cosThe; |
---|
209 | } |
---|
210 | |
---|
211 | #endif |
---|