1 | // %flair:license{
|
---|
2 | // This file is part of the Flair framework distributed under the
|
---|
3 | // CECILL-C License, Version 1.0.
|
---|
4 | // %flair:license}
|
---|
5 | // created: 2016/02/09
|
---|
6 | // filename: RotationMatrix.cpp
|
---|
7 | //
|
---|
8 | // author: Guillaume Sanahuja
|
---|
9 | // Copyright Heudiasyc UMR UTC/CNRS 7253
|
---|
10 | //
|
---|
11 | // version: $Id: $
|
---|
12 | //
|
---|
13 | // purpose: Class defining a rotation matrix
|
---|
14 | //
|
---|
15 | //
|
---|
16 | /*********************************************************************/
|
---|
17 |
|
---|
18 | #include "RotationMatrix.h"
|
---|
19 | #include "Object.h"
|
---|
20 | #include "Euler.h"
|
---|
21 | #include "Quaternion.h"
|
---|
22 | #include "math.h"
|
---|
23 |
|
---|
24 | namespace flair {
|
---|
25 | namespace core {
|
---|
26 |
|
---|
27 | RotationMatrix::RotationMatrix() {
|
---|
28 | for (int i = 0; i < 3; i++) {
|
---|
29 | for (int j = 0; j < 3; j++) {
|
---|
30 | if (i == j) {
|
---|
31 | m[i][j] = 1;
|
---|
32 | } else {
|
---|
33 | m[i][j] = 0;
|
---|
34 | }
|
---|
35 | }
|
---|
36 | }
|
---|
37 | }
|
---|
38 |
|
---|
39 | RotationMatrix::~RotationMatrix() {}
|
---|
40 |
|
---|
41 | void RotationMatrix::ToEuler(Euler &euler) const {
|
---|
42 | euler.roll = atanf(m[1][2] / m[2][2]);
|
---|
43 | euler.pitch = asinf(-m[0][2]);
|
---|
44 | euler.yaw = atan2f(m[0][1], m[0][0]);
|
---|
45 | }
|
---|
46 |
|
---|
47 | Euler RotationMatrix::ToEuler(void) const {
|
---|
48 | Euler euler;
|
---|
49 | ToEuler(euler);
|
---|
50 | return euler;
|
---|
51 | }
|
---|
52 |
|
---|
53 | //from
|
---|
54 | //http://www.euclideanspace.com/maths/geometry/rotations/conversions/matrixToQuaternion/
|
---|
55 | void RotationMatrix::ToQuaternion(Quaternion &quaternion) const {
|
---|
56 | float trace = m[0][0] + m[1][1] + m[2][2];
|
---|
57 | if( trace > 0 ) {
|
---|
58 | float s = 0.5f / sqrtf(trace+ 1.0f);
|
---|
59 | quaternion.q0 = 0.25f / s;
|
---|
60 | quaternion.q1 = ( m[2][1] - m[1][2] ) * s;
|
---|
61 | quaternion.q2 = ( m[0][2] - m[2][0] ) * s;
|
---|
62 | quaternion.q3 = ( m[1][0] - m[0][1] ) * s;
|
---|
63 | } else {
|
---|
64 | if ( m[0][0] > m[1][1] && m[0][0] > m[2][2] ) {
|
---|
65 | float s = 2.0f * sqrtf( 1.0f + m[0][0] - m[1][1] - m[2][2]);
|
---|
66 | quaternion.q0 = (m[2][1] - m[1][2] ) / s;
|
---|
67 | quaternion.q1 = 0.25f * s;
|
---|
68 | quaternion.q2 = (m[0][1] + m[1][0] ) / s;
|
---|
69 | quaternion.q3 = (m[0][2] + m[2][0] ) / s;
|
---|
70 | } else if (m[1][1] > m[2][2]) {
|
---|
71 | float s = 2.0f * sqrtf( 1.0f + m[1][1] - m[0][0] - m[2][2]);
|
---|
72 | quaternion.q0 = (m[0][2] - m[2][0] ) / s;
|
---|
73 | quaternion.q1 = (m[0][1] + m[1][0] ) / s;
|
---|
74 | quaternion.q2 = 0.25f * s;
|
---|
75 | quaternion.q3 = (m[1][2] + m[2][1] ) / s;
|
---|
76 | } else {
|
---|
77 | float s = 2.0f * sqrtf( 1.0f + m[2][2] - m[0][0] - m[1][1] );
|
---|
78 | quaternion.q0 = (m[1][0] - m[0][1] ) / s;
|
---|
79 | quaternion.q1 = (m[0][2] + m[2][0] ) / s;
|
---|
80 | quaternion.q2 = (m[1][2] + m[2][1] ) / s;
|
---|
81 | quaternion.q3 = 0.25f * s;
|
---|
82 | }
|
---|
83 | }
|
---|
84 | quaternion.Normalize();
|
---|
85 | }
|
---|
86 | /*
|
---|
87 | void RotationMatrix::ToQuaternion(Quaternion &quaternion) const {
|
---|
88 | quaternion.q0 = 0.5f * sqrtf(1.0f + m[0][0] + m[1][1] + m[2][2]);
|
---|
89 | quaternion.q1 = 0.5f * sqrtf(1.0f + m[0][0] - m[1][1] - m[2][2]);
|
---|
90 | quaternion.q2 = 0.5f * sqrtf(1.0f - m[0][0] + m[1][1] - m[2][2]);
|
---|
91 | quaternion.q3 = 0.5f * sqrtf(1.0f - m[0][0] - m[1][1] + m[2][2]);
|
---|
92 | //Printf("%f %f %f\n", m[0][0] , m[1][1] , m[2][2]);
|
---|
93 | //Printf("%f %f %f\n",1.0f + m[0][0] - m[1][1] - m[2][2],1.0f - m[0][0] + m[1][1] - m[2][2],1.0f - m[0][0] - m[1][1] + m[2][2]);
|
---|
94 | }
|
---|
95 | */
|
---|
96 | Quaternion RotationMatrix::ToQuaternion(void) const {
|
---|
97 | Quaternion quaternion;
|
---|
98 | ToQuaternion(quaternion);
|
---|
99 | return quaternion;
|
---|
100 | }
|
---|
101 |
|
---|
102 | float &RotationMatrix::operator()(size_t row, size_t col) {
|
---|
103 | if (row < 3 && col < 3) {
|
---|
104 | return m[row][col];
|
---|
105 | } else {
|
---|
106 | Printf("RotationMatrix: index (%i,%i) out of bound\n", row, col);
|
---|
107 | return m[2][2];
|
---|
108 | }
|
---|
109 | }
|
---|
110 |
|
---|
111 | const float &RotationMatrix::operator()(size_t row, size_t col) const {
|
---|
112 | if (row < 3 && col < 3) {
|
---|
113 | return m[row][col];
|
---|
114 | } else {
|
---|
115 | Printf("RotationMatrix: index (%i,%i) out of bound\n", row, col);
|
---|
116 | return m[2][2];
|
---|
117 | }
|
---|
118 | }
|
---|
119 |
|
---|
120 | } // end namespace core
|
---|
121 | } // end namespace flair
|
---|