// %flair:license{ // This file is part of the Flair framework distributed under the // CECILL-C License, Version 1.0. // %flair:license} // created: 2012/08/21 // filename: X4.cpp // // author: Osamah Saif, Guillaume Sanahuja // Copyright Heudiasyc UMR UTC/CNRS 7253 // // version: $Id: $ // // purpose: classe definissant un x4 // /*********************************************************************/ #include "X4.h" #include "Simulator.h" #include #include #include #include #include #include #ifdef GL #include #include "Blade.h" #include "MeshSceneNode.h" #include "Gui.h" #include #endif #define K_MOT 0.4f //blade animation #define G (float)9.81 //gravity ( N/(m/s²) ) #ifdef GL using namespace irr::video; using namespace irr::scene; using namespace irr::core; #endif using namespace flair::core; using namespace flair::gui; using namespace flair::actuator; namespace flair { namespace simulator { X4::X4(const Simulator* parent,std::string name, int dev_id): Model(parent,name) { Tab *setup_tab=new Tab(GetTabWidget(),"model"); m=new DoubleSpinBox(setup_tab->NewRow(),"mass (kg):",0,20,0.1); arm_length=new DoubleSpinBox(setup_tab->LastRowLastCol(),"arm length (m):",0,2,0.1); //l_cg=new DoubleSpinBox(setup_tab,"position G (m):",0,2,-0.5,0.5,0.02);//position du centre de gravité/centre de poussé k_mot=new DoubleSpinBox(setup_tab->NewRow(),"k_mot:",0,1,0.001,3);// vitesse rotation² (unité arbitraire) -> force (N) c_mot=new DoubleSpinBox(setup_tab->LastRowLastCol(),"c_mot:",0,1,0.001,3);// vitesse rotation moteur -> couple (N.m/unité arbitraire) f_air_vert=new DoubleSpinBox(setup_tab->NewRow(),"f_air_vert:",0,10,1);//frottements air depl. vertical, aussi utilisé pour les rotations ( N/(m/s) ) (du aux helices en rotation) f_air_lat=new DoubleSpinBox(setup_tab->LastRowLastCol(),"f_air_lat:",0,10,1);//frottements air deplacements lateraux ( N/(m/s) ) j_roll=new DoubleSpinBox(setup_tab->NewRow(),"j_roll:",0,1,0.001,5); //moment d'inertie d'un axe (N.m.s²/rad) j_pitch=new DoubleSpinBox(setup_tab->LastRowLastCol(),"j_pitch:",0,1,0.001,5); //moment d'inertie d'un axe (N.m.s²/rad) j_yaw=new DoubleSpinBox(setup_tab->LastRowLastCol(),"j_yaw:",0,1,0.001,5); //moment d'inertie d'un axe (N.m.s²/rad) motors=new SimuBldc(this,name,4,dev_id); } X4::~X4() { //les objets irrlicht seront automatiquement detruits (moteurs, helices, pales) par parenté } #ifdef GL void X4::Draw(void) { //create unite (1m=100cm) UAV; scale will be adapted according to arm_length parameter //note that the frame used is irrlicht one: //left handed, North East Up const IGeometryCreator *geo; geo=getGui()->getSceneManager()->getGeometryCreator(); //cylinders are aligned with y axis red_arm=geo->createCylinderMesh(2.5,100,16,SColor(0, 255, 0, 0)); black_arm=geo->createCylinderMesh(2.5,100,16,SColor(0, 128, 128, 128)); motor=geo->createCylinderMesh(7.5,15,16);//,SColor(0, 128, 128, 128)); //geo->drop(); ITexture* texture=getGui()->getTexture("carbone.jpg"); fl_arm=new MeshSceneNode(this, red_arm, vector3df(0,0,0),vector3df(0,0,-135)); fr_arm=new MeshSceneNode(this, red_arm, vector3df(0,0,0),vector3df(0,0,-45)); rl_arm=new MeshSceneNode(this, black_arm, vector3df(0,0,0),vector3df(0,0,135),texture); rr_arm=new MeshSceneNode(this, black_arm, vector3df(0,0,0),vector3df(0,0,45),texture); texture=getGui()->getTexture("metal047.jpg"); fl_motor=new MeshSceneNode(this, motor, vector3df(70.71,-70.71,2.5),vector3df(90,0,0),texture); fr_motor=new MeshSceneNode(this, motor ,vector3df(70.71,70.71,2.5),vector3df(90,0,0),texture); rl_motor=new MeshSceneNode(this, motor ,vector3df(-70.71,-70.71,2.5),vector3df(90,0,0),texture); rr_motor=new MeshSceneNode(this, motor ,vector3df(-70.71,70.71,2.5),vector3df(90,0,0),texture); fl_blade=new Blade(this, vector3df(70.71,-70.71,17.5)); fr_blade=new Blade(this, vector3df(70.71,70.71,17.5),true); rl_blade=new Blade(this, vector3df(-70.71,-70.71,17.5),true); rr_blade=new Blade(this, vector3df(-70.71,70.71,17.5)); motor_speed_mutex=new Mutex(this); for(int i=0;i<4;i++) motor_speed[i]=0; ExtraDraw(); } void X4::AnimateModel(void) { motor_speed_mutex->GetMutex(); fl_blade->SetRotationSpeed(K_MOT*motor_speed[0]); fr_blade->SetRotationSpeed(-K_MOT*motor_speed[1]); rl_blade->SetRotationSpeed(-K_MOT*motor_speed[2]); rr_blade->SetRotationSpeed(K_MOT*motor_speed[3]); motor_speed_mutex->ReleaseMutex(); //adapt UAV size if(arm_length->ValueChanged()==true) { setScale(arm_length->Value()); } } size_t X4::dbtSize(void) const { return 6*sizeof(float)+4*sizeof(float);//6ddl+4helices } void X4::WritedbtBuf(char* dbtbuf) {/* float *buf=(float*)dbtbuf; vector3df vect=getPosition(); memcpy(buf,&vect.X,sizeof(float)); buf++; memcpy(buf,&vect.Y,sizeof(float)); buf++; memcpy(buf,&vect.Z,sizeof(float)); buf++; vect=getRotation(); memcpy(buf,&vect.X,sizeof(float)); buf++; memcpy(buf,&vect.Y,sizeof(float)); buf++; memcpy(buf,&vect.Z,sizeof(float)); buf++; memcpy(buf,&motors,sizeof(rtsimu_motors));*/ } void X4::ReaddbtBuf(char* dbtbuf) {/* float *buf=(float*)dbtbuf; vector3df vect; memcpy(&vect.X,buf,sizeof(float)); buf++; memcpy(&vect.Y,buf,sizeof(float)); buf++; memcpy(&vect.Z,buf,sizeof(float)); buf++; setPosition(vect); memcpy(&vect.X,buf,sizeof(float)); buf++; memcpy(&vect.Y,buf,sizeof(float)); buf++; memcpy(&vect.Z,buf,sizeof(float)); buf++; ((ISceneNode*)(this))->setRotation(vect); memcpy(&motors,buf,sizeof(rtsimu_motors)); AnimateModele();*/ } #endif //GL //states are computed on fixed frame NED //x north //y east //z down void X4::CalcModel(void) { float fl_speed,fr_speed,rl_speed,rr_speed; float u_roll,u_pitch,u_yaw,u_thrust; #ifdef GL motor_speed_mutex->GetMutex(); #endif //GL motors->GetSpeeds(motor_speed); #ifdef GL motor_speed_mutex->ReleaseMutex(); #endif //GL fl_speed=motor_speed[0]; fr_speed=motor_speed[1]; rl_speed=motor_speed[2]; rr_speed=motor_speed[3]; /* ** =================================================================== ** u roll: roll torque ** ** =================================================================== */ u_roll=arm_length->Value()*k_mot->Value()*(fl_speed*fl_speed+rl_speed*rl_speed-fr_speed*fr_speed-rr_speed*rr_speed)*sqrtf(2)/2; /// Classical Nonlinear model of a quadrotor ( This is the w_x angular speed of the quadri in the body frame). It is a discrete integrator state[0].W.x=(dT()/j_roll->Value())*((j_yaw->Value()-j_pitch->Value())*state[-1].W.y*state[-1].W.z + u_roll) +state[-1].W.x; //u_roll=arm_length->Value()*k_mot->Value()*(fl_speed*fl_speed+rl_speed*rl_speed-fr_speed*fr_speed-rr_speed*rr_speed)*sqrtf(2)/2; //state[0].W.x=(dT()/j_roll->Value())*(u_roll-m->Value()*G*l_cg->Value()*sinf(state[-2].W.x)-f_air_vert->Value()*arm_length->Value()*arm_length->Value()*state[-1].W.x)+state[-1].W.x; /* ** =================================================================== ** u pitch : pitch torque ** ** =================================================================== */ u_pitch=arm_length->Value()*k_mot->Value()*(fl_speed*fl_speed+fr_speed*fr_speed-rl_speed*rl_speed-rr_speed*rr_speed)*sqrtf(2)/2; /// Classical Nonlinear model of a quadrotor ( This is the w_y angular speed of the quadri in the body frame). It is a discrete integrator state[0].W.y=(dT()/j_pitch->Value())*((j_roll->Value()-j_yaw->Value())*state[-1].W.x*state[-1].W.z + u_pitch)+state[-1].W.y; //u_pitch=arm_length->Value()*k_mot->Value()*(fl_speed*fl_speed+fr_speed*fr_speed-rl_speed*rl_speed-rr_speed*rr_speed)*sqrtf(2)/2; //state[0].W.y=(dT()/j_pitch->Value())*(u_pitch-m->Value()*G*l_cg->Value()*sinf(state[-2].W.y)-f_air_vert->Value()*arm_length->Value()*arm_length->Value()*state[-1].W.y)+state[-1].W.y; /* ** =================================================================== ** u yaw : yaw torque ** ** =================================================================== */ u_yaw=c_mot->Value()*(fl_speed*fl_speed+rr_speed*rr_speed-fr_speed*fr_speed-rl_speed*rl_speed); /// Classical Nonlinear model of a quadrotor ( This is the w_z angular speed of the quadri in the body frame). It is a discrete integrator state[0].W.z=(dT()/j_yaw->Value())* u_yaw +state[-1].W.z; //u_yaw=c_mot->Value()*(fl_speed*fl_speed+rr_speed*rr_speed-fr_speed*fr_speed-rl_speed*rl_speed); //state[0].W.z=(dT()/j_yaw->Value())*(u_yaw-f_air_lat->Value()*state[-1].W.z)+state[-1].W.z; // compute quaternion from W // Quaternion derivative: dQ = 0.5*(Q*Qw) Quaternion dQ=state[-1].Quat.GetDerivative(state[0].W); // Quaternion integration state[0].Quat = state[-1].Quat +dQ*dT(); state[0].Quat.Normalize(); // Calculation of the thrust from the reference speed of motors u_thrust=k_mot->Value()*(fl_speed*fl_speed+fr_speed*fr_speed+rl_speed*rl_speed+rr_speed*rr_speed); Vector3D vect(0,0,-u_thrust); vect.Rotate(state[0].Quat); /* ** =================================================================== ** x double integrator ** ** =================================================================== */ state[0].Pos.x=(dT()*dT()/m->Value())*(vect.x-f_air_lat->Value()*(state[-1].Pos.x-state[-2].Pos.x)/dT())+2*state[-1].Pos.x-state[-2].Pos.x; state[0].Vel.x=(state[0].Pos.x-state[-1].Pos.x)/dT(); /* ** =================================================================== ** y double integrator ** ** =================================================================== */ state[0].Pos.y=(dT()*dT()/m->Value())*(vect.y-f_air_lat->Value()*(state[-1].Pos.y-state[-2].Pos.y)/dT())+2*state[-1].Pos.y-state[-2].Pos.y; state[0].Vel.y=(state[0].Pos.y-state[-1].Pos.y)/dT(); /* ** =================================================================== ** z double integrator ** ** =================================================================== */ state[0].Pos.z=(dT()*dT()/m->Value())*(vect.z+f_air_vert->Value()*(state[-1].Pos.z-state[-2].Pos.z)/dT()+m->Value()*G)+2*state[-1].Pos.z-state[-2].Pos.z; state[0].Vel.z=(state[0].Pos.z-state[-1].Pos.z)/dT(); #ifndef GL if(state[0].Pos.z<0) state[0].Pos.z=0; #endif } } // end namespace simulator } // end namespace flair