source: flair-src/trunk/lib/FlairSimulator/src/X4.cpp@ 162

Last change on this file since 162 was 158, checked in by Sanahuja Guillaume, 7 years ago

corrected simu/device id for sensors

File size: 12.4 KB
Line 
1// %flair:license{
2// This file is part of the Flair framework distributed under the
3// CECILL-C License, Version 1.0.
4// %flair:license}
5// created: 2012/08/21
6// filename: X4.cpp
7//
8// author: Osamah Saif, Guillaume Sanahuja
9// Copyright Heudiasyc UMR UTC/CNRS 7253
10//
11// version: $Id: $
12//
13// purpose: classe definissant un x4
14//
15/*********************************************************************/
16
17#include "X4.h"
18#include <SimuBldc.h>
19#include <TabWidget.h>
20#include <Tab.h>
21#include <DoubleSpinBox.h>
22#include <GroupBox.h>
23#include <math.h>
24#ifdef GL
25#include <ISceneManager.h>
26#include "Blade.h"
27#include "MeshSceneNode.h"
28#include "Gui.h"
29#include <Mutex.h>
30#endif
31
32#define K_MOT 0.4f // blade animation
33#define G (float)9.81 // gravity ( N/(m/s²) )
34
35#ifdef GL
36using namespace irr::video;
37using namespace irr::scene;
38using namespace irr::core;
39#endif
40using namespace flair::core;
41using namespace flair::gui;
42using namespace flair::actuator;
43
44namespace flair {
45namespace simulator {
46
47X4::X4(std::string name, uint32_t modelId)
48 : Model(name,modelId) {
49 Tab *setup_tab = new Tab(GetTabWidget(), "model");
50 m = new DoubleSpinBox(setup_tab->NewRow(), "mass (kg):", 0, 20, 0.1);
51 arm_length = new DoubleSpinBox(setup_tab->LastRowLastCol(), "arm length (m):",
52 0, 2, 0.1);
53 // l_cg=new DoubleSpinBox(setup_tab,"position G
54 // (m):",0,2,-0.5,0.5,0.02);//position du centre de gravité/centre de poussé
55 k_mot =
56 new DoubleSpinBox(setup_tab->NewRow(), "k_mot:", 0, 1, 0.001,
57 3); // vitesse rotation² (unité arbitraire) -> force (N)
58 c_mot = new DoubleSpinBox(
59 setup_tab->LastRowLastCol(), "c_mot:", 0, 1, 0.001,
60 3); // vitesse rotation moteur -> couple (N.m/unité arbitraire)
61 f_air_vert = new DoubleSpinBox(setup_tab->NewRow(), "f_air_vert:", 0, 10,
62 1); // frottements air depl. vertical, aussi
63 // utilisé pour les rotations ( N/(m/s) )
64 // (du aux helices en rotation)
65 f_air_lat =
66 new DoubleSpinBox(setup_tab->LastRowLastCol(), "f_air_lat:", 0, 10,
67 1); // frottements air deplacements lateraux ( N/(m/s) )
68 j_roll = new DoubleSpinBox(setup_tab->NewRow(), "j_roll:", 0, 1, 0.001,
69 5); // moment d'inertie d'un axe (N.m.s²/rad)
70 j_pitch =
71 new DoubleSpinBox(setup_tab->LastRowLastCol(), "j_pitch:", 0, 1, 0.001,
72 5); // moment d'inertie d'un axe (N.m.s²/rad)
73 j_yaw = new DoubleSpinBox(setup_tab->LastRowLastCol(), "j_yaw:", 0, 1, 0.001,
74 5); // moment d'inertie d'un axe (N.m.s²/rad)
75
76 motors = new SimuBldc(this, name, 4, modelId,0);
77
78 SetIsReady(true);
79}
80
81X4::~X4() {
82 // les objets irrlicht seront automatiquement detruits (moteurs, helices,
83 // pales) par parenté
84}
85
86#ifdef GL
87
88void X4::Draw(void) {
89 // create unite (1m=100cm) UAV; scale will be adapted according to arm_length
90 // parameter
91 // note that the frame used is irrlicht one:
92 // left handed, North East Up
93 const IGeometryCreator *geo;
94 geo = getGui()->getSceneManager()->getGeometryCreator();
95
96 // cylinders are aligned with y axis
97 IMesh *red_arm = geo->createCylinderMesh(2.5, 100, 16, SColor(0, 255, 0, 0));
98 IMesh *black_arm = geo->createCylinderMesh(2.5, 100, 16, SColor(0, 128, 128, 128));
99 IMesh *motor = geo->createCylinderMesh(7.5, 15, 16); //,SColor(0, 128, 128, 128));
100 // geo->drop();
101
102 ITexture *texture = getGui()->getTexture("carbone.jpg");
103 MeshSceneNode *fl_arm = new MeshSceneNode(this, red_arm, vector3df(0, 0, 0),
104 vector3df(0, 0, -135));
105 MeshSceneNode *fr_arm = new MeshSceneNode(this, red_arm, vector3df(0, 0, 0),
106 vector3df(0, 0, -45));
107 MeshSceneNode *rl_arm = new MeshSceneNode(this, black_arm, vector3df(0, 0, 0),
108 vector3df(0, 0, 135), texture);
109 MeshSceneNode *rr_arm = new MeshSceneNode(this, black_arm, vector3df(0, 0, 0),
110 vector3df(0, 0, 45), texture);
111
112 texture = getGui()->getTexture("metal047.jpg");
113 MeshSceneNode *fl_motor = new MeshSceneNode(this, motor, vector3df(70.71, -70.71, 2.5),
114 vector3df(90, 0, 0), texture);
115 MeshSceneNode *fr_motor = new MeshSceneNode(this, motor, vector3df(70.71, 70.71, 2.5),
116 vector3df(90, 0, 0), texture);
117 MeshSceneNode *rl_motor = new MeshSceneNode(this, motor, vector3df(-70.71, -70.71, 2.5),
118 vector3df(90, 0, 0), texture);
119 MeshSceneNode *rr_motor = new MeshSceneNode(this, motor, vector3df(-70.71, 70.71, 2.5),
120 vector3df(90, 0, 0), texture);
121
122 fl_blade = new Blade(this, vector3df(70.71, -70.71, 17.5));
123 fr_blade = new Blade(this, vector3df(70.71, 70.71, 17.5), true);
124 rl_blade = new Blade(this, vector3df(-70.71, -70.71, 17.5), true);
125 rr_blade = new Blade(this, vector3df(-70.71, 70.71, 17.5));
126
127 motor_speed_mutex = new Mutex(this);
128 for (int i = 0; i < 4; i++)
129 motor_speed[i] = 0;
130 ExtraDraw();
131}
132
133void X4::AnimateModel(void) {
134 motor_speed_mutex->GetMutex();
135 fl_blade->SetRotationSpeed(K_MOT * motor_speed[0]);
136 fr_blade->SetRotationSpeed(-K_MOT * motor_speed[1]);
137 rl_blade->SetRotationSpeed(-K_MOT * motor_speed[2]);
138 rr_blade->SetRotationSpeed(K_MOT * motor_speed[3]);
139 motor_speed_mutex->ReleaseMutex();
140
141 // adapt UAV size
142 if (arm_length->ValueChanged() == true) {
143 setScale(arm_length->Value());
144 }
145}
146
147size_t X4::dbtSize(void) const {
148 return 6 * sizeof(float) + 4 * sizeof(float); // 6ddl+4helices
149}
150
151void X4::WritedbtBuf(
152 char *dbtbuf) { /*
153 float *buf=(float*)dbtbuf;
154 vector3df vect=getPosition();
155 memcpy(buf,&vect.X,sizeof(float));
156 buf++;
157 memcpy(buf,&vect.Y,sizeof(float));
158 buf++;
159 memcpy(buf,&vect.Z,sizeof(float));
160 buf++;
161 vect=getRotation();
162 memcpy(buf,&vect.X,sizeof(float));
163 buf++;
164 memcpy(buf,&vect.Y,sizeof(float));
165 buf++;
166 memcpy(buf,&vect.Z,sizeof(float));
167 buf++;
168 memcpy(buf,&motors,sizeof(rtsimu_motors));*/
169}
170
171void X4::ReaddbtBuf(
172 char *dbtbuf) { /*
173 float *buf=(float*)dbtbuf;
174 vector3df vect;
175 memcpy(&vect.X,buf,sizeof(float));
176 buf++;
177 memcpy(&vect.Y,buf,sizeof(float));
178 buf++;
179 memcpy(&vect.Z,buf,sizeof(float));
180 buf++;
181 setPosition(vect);
182 memcpy(&vect.X,buf,sizeof(float));
183 buf++;
184 memcpy(&vect.Y,buf,sizeof(float));
185 buf++;
186 memcpy(&vect.Z,buf,sizeof(float));
187 buf++;
188 ((ISceneNode*)(this))->setRotation(vect);
189 memcpy(&motors,buf,sizeof(rtsimu_motors));
190 AnimateModele();*/
191}
192#endif // GL
193
194// states are computed on fixed frame NED
195// x north
196// y east
197// z down
198void X4::CalcModel(void) {
199 float fl_speed, fr_speed, rl_speed, rr_speed;
200 float u_roll, u_pitch, u_yaw, u_thrust;
201#ifdef GL
202 motor_speed_mutex->GetMutex();
203#endif // GL
204 motors->GetSpeeds(motor_speed);
205#ifdef GL
206 motor_speed_mutex->ReleaseMutex();
207#endif // GL
208 fl_speed = motor_speed[0];
209 fr_speed = motor_speed[1];
210 rl_speed = motor_speed[2];
211 rr_speed = motor_speed[3];
212
213 /*
214 ** ===================================================================
215 ** u roll: roll torque
216 **
217 ** ===================================================================
218 */
219 u_roll = arm_length->Value() * k_mot->Value() *
220 (fl_speed * fl_speed + rl_speed * rl_speed - fr_speed * fr_speed -
221 rr_speed * rr_speed) *
222 sqrtf(2) / 2;
223
224 /// Classical Nonlinear model of a quadrotor ( This is the w_x angular speed
225 /// of the quadri in the body frame). It is a discrete integrator
226 state[0].W.x =
227 (dT() / j_roll->Value()) *
228 ((j_yaw->Value() - j_pitch->Value()) * state[-1].W.y * state[-1].W.z +
229 u_roll) +
230 state[-1].W.x;
231
232 // u_roll=arm_length->Value()*k_mot->Value()*(fl_speed*fl_speed+rl_speed*rl_speed-fr_speed*fr_speed-rr_speed*rr_speed)*sqrtf(2)/2;
233 // state[0].W.x=(dT()/j_roll->Value())*(u_roll-m->Value()*G*l_cg->Value()*sinf(state[-2].W.x)-f_air_vert->Value()*arm_length->Value()*arm_length->Value()*state[-1].W.x)+state[-1].W.x;
234
235 /*
236 ** ===================================================================
237 ** u pitch : pitch torque
238 **
239 ** ===================================================================
240 */
241 u_pitch = arm_length->Value() * k_mot->Value() *
242 (fl_speed * fl_speed + fr_speed * fr_speed - rl_speed * rl_speed -
243 rr_speed * rr_speed) *
244 sqrtf(2) / 2;
245
246 /// Classical Nonlinear model of a quadrotor ( This is the w_y angular speed
247 /// of the quadri in the body frame). It is a discrete integrator
248 state[0].W.y =
249 (dT() / j_pitch->Value()) *
250 ((j_roll->Value() - j_yaw->Value()) * state[-1].W.x * state[-1].W.z +
251 u_pitch) +
252 state[-1].W.y;
253
254 // u_pitch=arm_length->Value()*k_mot->Value()*(fl_speed*fl_speed+fr_speed*fr_speed-rl_speed*rl_speed-rr_speed*rr_speed)*sqrtf(2)/2;
255 // state[0].W.y=(dT()/j_pitch->Value())*(u_pitch-m->Value()*G*l_cg->Value()*sinf(state[-2].W.y)-f_air_vert->Value()*arm_length->Value()*arm_length->Value()*state[-1].W.y)+state[-1].W.y;
256
257 /*
258 ** ===================================================================
259 ** u yaw : yaw torque
260 **
261 ** ===================================================================
262 */
263 u_yaw = c_mot->Value() * (fl_speed * fl_speed + rr_speed * rr_speed -
264 fr_speed * fr_speed - rl_speed * rl_speed);
265
266 /// Classical Nonlinear model of a quadrotor ( This is the w_z angular speed
267 /// of the quadri in the body frame). It is a discrete integrator
268 state[0].W.z = (dT() / j_yaw->Value()) * u_yaw + state[-1].W.z;
269
270 // u_yaw=c_mot->Value()*(fl_speed*fl_speed+rr_speed*rr_speed-fr_speed*fr_speed-rl_speed*rl_speed);
271 // state[0].W.z=(dT()/j_yaw->Value())*(u_yaw-f_air_lat->Value()*state[-1].W.z)+state[-1].W.z;
272
273 // compute quaternion from W
274 // Quaternion derivative: dQ = 0.5*(Q*Qw)
275 Quaternion dQ = state[-1].Quat.GetDerivative(state[0].W);
276
277 // Quaternion integration
278 state[0].Quat = state[-1].Quat + dQ * dT();
279 state[0].Quat.Normalize();
280
281 // Calculation of the thrust from the reference speed of motors
282 u_thrust = k_mot->Value() * (fl_speed * fl_speed + fr_speed * fr_speed +
283 rl_speed * rl_speed + rr_speed * rr_speed);
284 Vector3D vect(0, 0, -u_thrust);
285 vect.Rotate(state[0].Quat);
286
287 /*
288 ** ===================================================================
289 ** x double integrator
290 **
291 ** ===================================================================
292 */
293 state[0].Pos.x =
294 (dT() * dT() / m->Value()) *
295 (vect.x -
296 f_air_lat->Value() * (state[-1].Pos.x - state[-2].Pos.x) / dT()) +
297 2 * state[-1].Pos.x - state[-2].Pos.x;
298 state[0].Vel.x = (state[0].Pos.x - state[-1].Pos.x) / dT();
299
300 /*
301 ** ===================================================================
302 ** y double integrator
303 **
304 ** ===================================================================
305 */
306 state[0].Pos.y =
307 (dT() * dT() / m->Value()) *
308 (vect.y -
309 f_air_lat->Value() * (state[-1].Pos.y - state[-2].Pos.y) / dT()) +
310 2 * state[-1].Pos.y - state[-2].Pos.y;
311 state[0].Vel.y = (state[0].Pos.y - state[-1].Pos.y) / dT();
312
313 /*
314 ** ===================================================================
315 ** z double integrator
316 **
317 ** ===================================================================
318 */
319 state[0].Pos.z =
320 (dT() * dT() / m->Value()) *
321 (vect.z +
322 f_air_vert->Value() * (state[-1].Pos.z - state[-2].Pos.z) / dT() +
323 m->Value() * G) +
324 2 * state[-1].Pos.z - state[-2].Pos.z;
325 state[0].Vel.z = (state[0].Pos.z - state[-1].Pos.z) / dT();
326
327#ifndef GL
328 if (state[0].Pos.z < 0)
329 state[0].Pos.z = 0;
330#endif
331}
332
333} // end namespace simulator
334} // end namespace flair
Note: See TracBrowser for help on using the repository browser.