source: flair-src/trunk/lib/FlairSimulator/src/X8.cpp@ 158

Last change on this file since 158 was 158, checked in by Sanahuja Guillaume, 7 years ago

corrected simu/device id for sensors

File size: 15.3 KB
RevLine 
[10]1// %flair:license{
[15]2// This file is part of the Flair framework distributed under the
3// CECILL-C License, Version 1.0.
[10]4// %flair:license}
[8]5// created: 2014/04/03
6// filename: X8.cpp
7//
8// author: Majd Saied, Guillaume Sanahuja
9// Copyright Heudiasyc UMR UTC/CNRS 7253
10//
11// version: $Id: $
12//
13// purpose: classe definissant un X8
14//
15/*********************************************************************/
16
17#include "X8.h"
18#include <SimuBldc.h>
19#include <TabWidget.h>
20#include <Tab.h>
21#include <DoubleSpinBox.h>
22#include <GroupBox.h>
23#include <math.h>
24#ifdef GL
25#include <ISceneManager.h>
26#include "Blade.h"
27#include "MeshSceneNode.h"
28#include "Gui.h"
29#include <Mutex.h>
30#endif
31
[15]32#define K_MOT 0.4f // blade animation
33#define G (float)9.81 // gravity ( N/(m/s²) )
[8]34
35#ifdef GL
36using namespace irr::video;
37using namespace irr::scene;
38using namespace irr::core;
39#endif
40using namespace flair::core;
41using namespace flair::gui;
42using namespace flair::actuator;
43
[15]44namespace flair {
45namespace simulator {
[8]46
[158]47X8::X8(std::string name, uint32_t modelId): Model( name,modelId) {
[15]48 Tab *setup_tab = new Tab(GetTabWidget(), "model");
49 m = new DoubleSpinBox(setup_tab->NewRow(), "mass (kg):", 0, 20, 0.1);
50 arm_length = new DoubleSpinBox(setup_tab->LastRowLastCol(), "arm length (m):",
51 0, 2, 0.1);
52 l_cg = new DoubleSpinBox(
53 setup_tab->LastRowLastCol(), "position G (m):", -0.5, 0.5,
54 0.02); // position du centre de gravité/centre de poussé
55 k_mot =
56 new DoubleSpinBox(setup_tab->NewRow(), "k_mot:", 0, 1, 0.001,
57 3); // vitesse rotation² (unité arbitraire) -> force (N)
58 c_mot = new DoubleSpinBox(
59 setup_tab->LastRowLastCol(), "c_mot:", 0, 1, 0.001,
60 3); // vitesse rotation moteur -> couple (N.m/unité arbitraire)
61 f_air_vert = new DoubleSpinBox(setup_tab->NewRow(), "f_air_vert:", 0, 10,
62 1); // frottements air depl. vertical, aussi
63 // utilisé pour les rotations ( N/(m/s) )
64 // (du aux helices en rotation)
65 f_air_lat =
66 new DoubleSpinBox(setup_tab->LastRowLastCol(), "f_air_lat:", 0, 10,
67 1); // frottements air deplacements lateraux ( N/(m/s) )
68 j_roll = new DoubleSpinBox(setup_tab->NewRow(), "j_roll:", 0, 1, 0.001,
69 5); // moment d'inertie d'un axe (N.m.s²/rad)
70 j_pitch =
71 new DoubleSpinBox(setup_tab->LastRowLastCol(), "j_pitch:", 0, 1, 0.001,
72 5); // moment d'inertie d'un axe (N.m.s²/rad)
73 j_yaw = new DoubleSpinBox(setup_tab->LastRowLastCol(), "j_yaw:", 0, 1, 0.001,
74 5); // moment d'inertie d'un axe (N.m.s²/rad)
75 j_r = new DoubleSpinBox(setup_tab->NewRow(), "j_r:", 0, 1,
76 0.001); // moment des helices (N.m.s²/rad)
77 sigma = new DoubleSpinBox(
78 setup_tab->LastRowLastCol(), "sigma:", 0, 1,
79 0.1); // coefficient de perte d efficacite aerodynamique (sans unite)
80 S = new DoubleSpinBox(
81 setup_tab->LastRowLastCol(), "S:", 1, 2,
82 0.1); // coefficient de forme des helices 1<S=1+Ss/Sprop<2 (sans unite)
[8]83
[158]84 motors = new SimuBldc(this, name, 8, modelId,0);
[157]85
86 SetIsReady(true);
[8]87}
88
[15]89void X8::Draw() {
[8]90#ifdef GL
91
[15]92 // create unite (1m=100cm) UAV; scale will be adapted according to arm_length
93 // parameter
94 // note that the frame used is irrlicht one:
95 // left handed, North East Up
[8]96
[15]97 const IGeometryCreator *geo;
98 geo = getGui()->getSceneManager()->getGeometryCreator();
[8]99
[15]100 // cylinders are aligned with y axis
[158]101 IMesh *red_arm = geo->createCylinderMesh(2.5, 100, 16, SColor(0, 255, 0, 0));
102 IMesh *black_arm = geo->createCylinderMesh(2.5, 100, 16, SColor(0, 128, 128, 128));
103 IMesh *motor = geo->createCylinderMesh(7.5, 15, 16); //,SColor(0, 128, 128, 128));
[15]104 // geo->drop();
[8]105
[15]106 ITexture *texture = getGui()->getTexture("carbone.jpg");
[158]107 MeshSceneNode *fl_arm = new MeshSceneNode(this, red_arm, vector3df(0, 0, 0),
[15]108 vector3df(0, 0, -135));
[158]109 MeshSceneNode *fr_arm = new MeshSceneNode(this, red_arm, vector3df(0, 0, 0),
[15]110 vector3df(0, 0, -45));
[158]111 MeshSceneNode *rl_arm = new MeshSceneNode(this, black_arm, vector3df(0, 0, 0),
[15]112 vector3df(0, 0, 135), texture);
[158]113 MeshSceneNode *rr_arm = new MeshSceneNode(this, black_arm, vector3df(0, 0, 0),
[15]114 vector3df(0, 0, 45), texture);
[8]115
[15]116 texture = getGui()->getTexture("metal047.jpg");
[158]117 MeshSceneNode *tfl_motor = new MeshSceneNode(this, motor, vector3df(70.71, -70.71, 2.5),
[15]118 vector3df(90, 0, 0), texture);
[158]119 MeshSceneNode *tfr_motor = new MeshSceneNode(this, motor, vector3df(70.71, 70.71, 2.5),
[15]120 vector3df(90, 0, 0), texture);
[158]121 MeshSceneNode *trl_motor = new MeshSceneNode(this, motor, vector3df(-70.71, -70.71, 2.5),
[15]122 vector3df(90, 0, 0), texture);
[158]123 MeshSceneNode *trr_motor = new MeshSceneNode(this, motor, vector3df(-70.71, 70.71, 2.5),
[15]124 vector3df(90, 0, 0), texture);
[8]125
[158]126 MeshSceneNode *bfl_motor = new MeshSceneNode(this, motor, vector3df(70.71, -70.71, -17.5),
[15]127 vector3df(90, 0, 0), texture);
[158]128 MeshSceneNode *bfr_motor = new MeshSceneNode(this, motor, vector3df(70.71, 70.71, -17.5),
[15]129 vector3df(90, 0, 0), texture);
[158]130 MeshSceneNode *brl_motor = new MeshSceneNode(this, motor, vector3df(-70.71, -70.71, -17.5),
[15]131 vector3df(90, 0, 0), texture);
[158]132 MeshSceneNode *brr_motor = new MeshSceneNode(this, motor, vector3df(-70.71, 70.71, -17.5),
[15]133 vector3df(90, 0, 0), texture);
[8]134
[15]135 tfl_blade = new Blade(this, vector3df(70.71, -70.71, 17.5));
136 tfr_blade = new Blade(this, vector3df(70.71, 70.71, 17.5), true);
137 trl_blade = new Blade(this, vector3df(-70.71, -70.71, 17.5), true);
138 trr_blade = new Blade(this, vector3df(-70.71, 70.71, 17.5));
[8]139
[15]140 bfl_blade = new Blade(this, vector3df(70.71, -70.71, -17.5));
141 bfr_blade = new Blade(this, vector3df(70.71, 70.71, -17.5), true);
142 brl_blade = new Blade(this, vector3df(-70.71, -70.71, -17.5), true);
143 brr_blade = new Blade(this, vector3df(-70.71, 70.71, -17.5));
[8]144
[15]145 motor_speed_mutex = new Mutex(this);
146 for (int i = 0; i < 8; i++)
147 motor_speed[i] = 0;
148 ExtraDraw();
149#endif
[8]150}
151
[15]152X8::~X8() {
153 // les objets irrlicht seront automatiquement detruits (moteurs, helices,
154 // pales) par parenté
[8]155}
156
157#ifdef GL
[15]158void X8::AnimateModel(void) {
159 motor_speed_mutex->GetMutex();
160 tfl_blade->SetRotationSpeed(K_MOT * motor_speed[0]);
161 tfr_blade->SetRotationSpeed(-K_MOT * motor_speed[1]);
162 trl_blade->SetRotationSpeed(-K_MOT * motor_speed[2]);
163 trr_blade->SetRotationSpeed(K_MOT * motor_speed[3]);
[8]164
[15]165 bfl_blade->SetRotationSpeed(-K_MOT * motor_speed[4]);
166 bfr_blade->SetRotationSpeed(K_MOT * motor_speed[5]);
167 brl_blade->SetRotationSpeed(K_MOT * motor_speed[6]);
168 brr_blade->SetRotationSpeed(-K_MOT * motor_speed[7]);
169 motor_speed_mutex->ReleaseMutex();
[8]170
[15]171 // adapt UAV size
172 if (arm_length->ValueChanged() == true) {
173 setScale(arm_length->Value());
174 }
[8]175}
176
[15]177size_t X8::dbtSize(void) const {
178 return 6 * sizeof(float) + 4 * sizeof(float); // 6ddl+4helices
[8]179}
180
[15]181void X8::WritedbtBuf(
182 char *dbtbuf) { /*
183 float *buf=(float*)dbtbuf;
184 vector3df vect=getPosition();
185 memcpy(buf,&vect.X,sizeof(float));
186 buf++;
187 memcpy(buf,&vect.Y,sizeof(float));
188 buf++;
189 memcpy(buf,&vect.Z,sizeof(float));
190 buf++;
191 vect=getRotation();
192 memcpy(buf,&vect.X,sizeof(float));
193 buf++;
194 memcpy(buf,&vect.Y,sizeof(float));
195 buf++;
196 memcpy(buf,&vect.Z,sizeof(float));
197 buf++;
198 memcpy(buf,&motors,sizeof(rtsimu_motors));*/
[8]199}
200
[15]201void X8::ReaddbtBuf(
202 char *dbtbuf) { /*
203 float *buf=(float*)dbtbuf;
204 vector3df vect;
205 memcpy(&vect.X,buf,sizeof(float));
206 buf++;
207 memcpy(&vect.Y,buf,sizeof(float));
208 buf++;
209 memcpy(&vect.Z,buf,sizeof(float));
210 buf++;
211 setPosition(vect);
212 memcpy(&vect.X,buf,sizeof(float));
213 buf++;
214 memcpy(&vect.Y,buf,sizeof(float));
215 buf++;
216 memcpy(&vect.Z,buf,sizeof(float));
217 buf++;
218 ((ISceneNode*)(this))->setRotation(vect);
219 memcpy(&motors,buf,sizeof(rtsimu_motors));
220 AnimateModele();*/
[8]221}
[15]222#endif // GL
[8]223
[15]224// states are computed on fixed frame NED
225// x north
226// y east
227// z down
228void X8::CalcModel(void) {
229 float tfl_speed, tfr_speed, trl_speed, trr_speed;
230 float bfl_speed, bfr_speed, brl_speed, brr_speed;
231 float u_roll, u_pitch, u_yaw, u_thrust;
232 float omega;
[8]233#ifdef GL
[15]234 motor_speed_mutex->GetMutex();
235#endif // GL
236 motors->GetSpeeds(motor_speed);
[8]237#ifdef GL
[15]238 motor_speed_mutex->ReleaseMutex();
239#endif // GL
240 tfl_speed = motor_speed[0];
241 tfr_speed = motor_speed[1];
242 trl_speed = motor_speed[2];
243 trr_speed = motor_speed[3];
244 bfl_speed = motor_speed[4];
245 bfr_speed = motor_speed[5];
246 brl_speed = motor_speed[6];
247 brr_speed = motor_speed[7];
[8]248
[15]249 omega = tfl_speed + brl_speed + trr_speed + bfr_speed - bfl_speed -
250 trl_speed - brr_speed - tfr_speed;
[8]251
[15]252 /*
253 ** ===================================================================
254 ** u roll: roll torque
255 **
256 ** ===================================================================
257 */
[8]258
[15]259 u_roll = arm_length->Value() * k_mot->Value() *
260 (sigma->Value() * tfl_speed * tfl_speed + bfl_speed * bfl_speed +
261 sigma->Value() * trl_speed * trl_speed + brl_speed * brl_speed -
262 sigma->Value() * tfr_speed * tfr_speed - bfr_speed * bfr_speed -
263 sigma->Value() * trr_speed * trr_speed - brr_speed * brr_speed) *
264 sqrtf(2) / 2;
[8]265
[15]266 /// Classical Nonlinear model of a quadrotor ( This is the w_x angular speed
267 /// of the quadri in the body frame). It is a discrete integrator
268 // state[0].W.x=(dT()/j_roll->Value())*((j_yaw->Value()-j_pitch->Value())*state[-1].W.y*state[-1].W.z-j_r->Value()*state[-1].W.y*omega
269 // + u_roll) +state[-1].W.x;//Osamah
270 state[0].W.x =
271 (dT() / j_roll->Value()) *
272 ((j_pitch->Value() - j_yaw->Value()) * state[-1].W.y * state[-1].W.z -
273 j_r->Value() * state[-1].W.y * omega + u_roll) +
274 state[-1].W.x; // Majd
[8]275
[15]276 // state[0].W.x=(dT()/j_roll->Value())*(u_roll-m->Value()*G*l_cg->Value()*sinf(state[-2].W.x)-f_air_vert->Value()*arm_length->Value()*arm_length->Value()*state[-1].W.x)+state[-1].W.x;
[8]277
[15]278 /*
279 ** ===================================================================
280 ** u pitch : pitch torque
281 **
282 ** ===================================================================
283 */
284 u_pitch = arm_length->Value() * k_mot->Value() *
285 (sigma->Value() * tfl_speed * tfl_speed + bfl_speed * bfl_speed +
286 sigma->Value() * tfr_speed * tfr_speed + bfr_speed * bfr_speed -
287 sigma->Value() * trl_speed * trl_speed - brl_speed * brl_speed -
288 sigma->Value() * trr_speed * trr_speed - brr_speed * brr_speed) *
289 sqrtf(2) / 2;
[8]290
[15]291 /// Classical Nonlinear model of a quadrotor ( This is the w_y angular speed
292 /// of the quadri in the body frame). It is a discrete integrator
293 // state[0].W.y=(dT()/j_pitch->Value())*((j_roll->Value()-j_yaw->Value())*state[-1].W.x*state[-1].W.z-j_r->Value()*state[-1].W.x*omega
294 // + u_pitch)+state[-1].W.y;//Osamah
295 state[0].W.y =
296 (dT() / j_pitch->Value()) *
297 ((j_yaw->Value() - j_roll->Value()) * state[-1].W.x * state[-1].W.z -
298 j_r->Value() * state[-1].W.x * omega + u_pitch) +
299 state[-1].W.y; // Majd
[8]300
[15]301 // state[0].W.y=(dT()/j_pitch->Value())*(u_pitch-m->Value()*G*l_cg->Value()*sinf(state[-2].W.y)-f_air_vert->Value()*arm_length->Value()*arm_length->Value()*state[-1].W.y)+state[-1].W.y;
[8]302
[15]303 /*
304 ** ===================================================================
305 ** u yaw : yaw torque
306 **
307 ** ===================================================================
308 */
309 u_yaw = c_mot->Value() * (tfl_speed * tfl_speed - bfl_speed * bfl_speed +
310 trr_speed * trr_speed - brr_speed * brr_speed -
311 tfr_speed * tfr_speed + bfr_speed * bfr_speed -
312 trl_speed * trl_speed + brl_speed * brl_speed);
[8]313
[15]314 /// Classical Nonlinear model of a quadrotor ( This is the w_z angular speed
315 /// of the quadri in the body frame). It is a discrete integrator
316 // state[0].W.z=(dT()/j_yaw->Value())* u_yaw +state[-1].W.z;//Osamah
317 state[0].W.z =
318 (dT() / j_yaw->Value()) * ((j_roll->Value() - j_pitch->Value()) *
319 state[-1].W.x * state[-1].W.y +
320 u_yaw) +
321 state[-1].W.z; // Majd
[8]322
[15]323 // state[0].W.z=(dT()/j_yaw->Value())*(u_yaw-f_air_lat->Value()*state[-1].W.z)+state[-1].W.z;
[8]324
[15]325 // compute quaternion from W
326 // Quaternion derivative: dQ = 0.5*(Q*Qw)
327 Quaternion dQ = state[-1].Quat.GetDerivative(state[0].W);
[8]328
[15]329 // Quaternion integration
330 state[0].Quat = state[-1].Quat + dQ * dT();
331 state[0].Quat.Normalize();
[8]332
[15]333 // Calculation of the thrust from the reference speed of motors
334 u_thrust =
335 k_mot->Value() * S->Value() *
336 (sigma->Value() * tfl_speed * tfl_speed +
337 sigma->Value() * tfr_speed * tfr_speed +
338 sigma->Value() * trl_speed * trl_speed +
339 sigma->Value() * trr_speed * trr_speed + bfl_speed * bfl_speed +
340 bfr_speed * bfr_speed + brl_speed * brl_speed + brr_speed * brr_speed);
341 Vector3D vect(0, 0, -u_thrust);
342 vect.Rotate(state[0].Quat);
[8]343
[15]344 /*
345 ** ===================================================================
346 ** x double integrator
347 **
348 ** ===================================================================
349 */
350 state[0].Pos.x =
351 (dT() * dT() / m->Value()) *
352 (vect.x -
353 f_air_lat->Value() * (state[-1].Pos.x - state[-2].Pos.x) / dT()) +
354 2 * state[-1].Pos.x - state[-2].Pos.x;
355 state[0].Vel.x = (state[0].Pos.x - state[-1].Pos.x) / dT();
[8]356
[15]357 /*
358 ** ===================================================================
359 ** y double integrator
360 **
361 ** ===================================================================
362 */
363 state[0].Pos.y =
364 (dT() * dT() / m->Value()) *
365 (vect.y -
366 f_air_lat->Value() * (state[-1].Pos.y - state[-2].Pos.y) / dT()) +
367 2 * state[-1].Pos.y - state[-2].Pos.y;
368 state[0].Vel.y = (state[0].Pos.y - state[-1].Pos.y) / dT();
[8]369
[15]370 /*
371 ** ===================================================================
372 ** z double integrator
373 **
374 ** ===================================================================
375 */
376 state[0].Pos.z =
377 (dT() * dT() / m->Value()) *
378 (vect.z +
379 f_air_vert->Value() * (state[-1].Pos.z - state[-2].Pos.z) / dT() +
380 m->Value() * G) +
381 2 * state[-1].Pos.z - state[-2].Pos.z;
382 state[0].Vel.z = (state[0].Pos.z - state[-1].Pos.z) / dT();
[8]383
384#ifndef GL
[15]385 if (state[0].Pos.z < 0)
386 state[0].Pos.z = 0;
[8]387#endif
388}
389
390} // end namespace simulator
391} // end namespace flair
Note: See TracBrowser for help on using the repository browser.