source: flair-src/trunk/lib/FlairSimulator/src/X8.cpp@ 10

Last change on this file since 10 was 10, checked in by Sanahuja Guillaume, 8 years ago

lic

File size: 13.1 KB
Line 
1// %flair:license{
2// This file is part of the Flair framework distributed under the
3// CECILL-C License, Version 1.0.
4// %flair:license}
5// created: 2014/04/03
6// filename: X8.cpp
7//
8// author: Majd Saied, Guillaume Sanahuja
9// Copyright Heudiasyc UMR UTC/CNRS 7253
10//
11// version: $Id: $
12//
13// purpose: classe definissant un X8
14//
15/*********************************************************************/
16
17#include "X8.h"
18#include "Simulator.h"
19#include <SimuBldc.h>
20#include <TabWidget.h>
21#include <Tab.h>
22#include <DoubleSpinBox.h>
23#include <GroupBox.h>
24#include <math.h>
25#ifdef GL
26#include <ISceneManager.h>
27#include "Blade.h"
28#include "MeshSceneNode.h"
29#include "Gui.h"
30#include <Mutex.h>
31#endif
32
33#define K_MOT 0.4f //blade animation
34#define G (float)9.81 //gravity ( N/(m/s²) )
35
36#ifdef GL
37using namespace irr::video;
38using namespace irr::scene;
39using namespace irr::core;
40#endif
41using namespace flair::core;
42using namespace flair::gui;
43using namespace flair::actuator;
44
45namespace flair
46{
47namespace simulator
48{
49
50X8::X8(const Simulator* parent,std::string name, int dev_id): Model(parent,name)
51{
52 Tab *setup_tab=new Tab(GetTabWidget(),"model");
53 m=new DoubleSpinBox(setup_tab->NewRow(),"mass (kg):",0,20,0.1);
54 arm_length=new DoubleSpinBox(setup_tab->LastRowLastCol(),"arm length (m):",0,2,0.1);
55 l_cg=new DoubleSpinBox(setup_tab->LastRowLastCol(),"position G (m):",-0.5,0.5,0.02);//position du centre de gravité/centre de poussé
56 k_mot=new DoubleSpinBox(setup_tab->NewRow(),"k_mot:",0,1,0.001,3);// vitesse rotation² (unité arbitraire) -> force (N)
57 c_mot=new DoubleSpinBox(setup_tab->LastRowLastCol(),"c_mot:",0,1,0.001,3);// vitesse rotation moteur -> couple (N.m/unité arbitraire)
58 f_air_vert=new DoubleSpinBox(setup_tab->NewRow(),"f_air_vert:",0,10,1);//frottements air depl. vertical, aussi utilisé pour les rotations ( N/(m/s) ) (du aux helices en rotation)
59 f_air_lat=new DoubleSpinBox(setup_tab->LastRowLastCol(),"f_air_lat:",0,10,1);//frottements air deplacements lateraux ( N/(m/s) )
60 j_roll=new DoubleSpinBox(setup_tab->NewRow(),"j_roll:",0,1,0.001,5); //moment d'inertie d'un axe (N.m.s²/rad)
61 j_pitch=new DoubleSpinBox(setup_tab->LastRowLastCol(),"j_pitch:",0,1,0.001,5); //moment d'inertie d'un axe (N.m.s²/rad)
62 j_yaw=new DoubleSpinBox(setup_tab->LastRowLastCol(),"j_yaw:",0,1,0.001,5); //moment d'inertie d'un axe (N.m.s²/rad)
63 j_r=new DoubleSpinBox(setup_tab->NewRow(),"j_r:",0,1,0.001);// moment des helices (N.m.s²/rad)
64 sigma=new DoubleSpinBox(setup_tab->LastRowLastCol(),"sigma:",0,1,0.1); // coefficient de perte d efficacite aerodynamique (sans unite)
65 S=new DoubleSpinBox(setup_tab->LastRowLastCol(),"S:",1,2,0.1); // coefficient de forme des helices 1<S=1+Ss/Sprop<2 (sans unite)
66
67 motors=new SimuBldc(this,name,8,dev_id);
68}
69
70void X8::Draw(){
71#ifdef GL
72
73 //create unite (1m=100cm) UAV; scale will be adapted according to arm_length parameter
74 //note that the frame used is irrlicht one:
75 //left handed, North East Up
76
77 const IGeometryCreator *geo;
78 geo=getGui()->getSceneManager()->getGeometryCreator();
79
80 //cylinders are aligned with y axis
81 red_arm=geo->createCylinderMesh(2.5,100,16,SColor(0, 255, 0, 0));
82 black_arm=geo->createCylinderMesh(2.5,100,16,SColor(0, 128, 128, 128));
83 motor=geo->createCylinderMesh(7.5,15,16);//,SColor(0, 128, 128, 128));
84 //geo->drop();
85
86 ITexture* texture=getGui()->getTexture("carbone.jpg");
87 fl_arm=new MeshSceneNode(this, red_arm, vector3df(0,0,0),vector3df(0,0,-135));
88 fr_arm=new MeshSceneNode(this, red_arm, vector3df(0,0,0),vector3df(0,0,-45));
89 rl_arm=new MeshSceneNode(this, black_arm, vector3df(0,0,0),vector3df(0,0,135),texture);
90 rr_arm=new MeshSceneNode(this, black_arm, vector3df(0,0,0),vector3df(0,0,45),texture);
91
92 texture=getGui()->getTexture("metal047.jpg");
93 tfl_motor=new MeshSceneNode(this, motor, vector3df(70.71,-70.71,2.5),vector3df(90,0,0),texture);
94 tfr_motor=new MeshSceneNode(this, motor ,vector3df(70.71,70.71,2.5),vector3df(90,0,0),texture);
95 trl_motor=new MeshSceneNode(this, motor ,vector3df(-70.71,-70.71,2.5),vector3df(90,0,0),texture);
96 trr_motor=new MeshSceneNode(this, motor ,vector3df(-70.71,70.71,2.5),vector3df(90,0,0),texture);
97
98 bfl_motor=new MeshSceneNode(this, motor, vector3df(70.71,-70.71,-17.5),vector3df(90,0,0),texture);
99 bfr_motor=new MeshSceneNode(this, motor ,vector3df(70.71,70.71,-17.5),vector3df(90,0,0),texture);
100 brl_motor=new MeshSceneNode(this, motor ,vector3df(-70.71,-70.71,-17.5),vector3df(90,0,0),texture);
101 brr_motor=new MeshSceneNode(this, motor ,vector3df(-70.71,70.71,-17.5),vector3df(90,0,0),texture);
102
103 tfl_blade=new Blade(this, vector3df(70.71,-70.71,17.5));
104 tfr_blade=new Blade(this, vector3df(70.71,70.71,17.5),true);
105 trl_blade=new Blade(this, vector3df(-70.71,-70.71,17.5),true);
106 trr_blade=new Blade(this, vector3df(-70.71,70.71,17.5));
107
108 bfl_blade=new Blade(this, vector3df(70.71,-70.71,-17.5));
109 bfr_blade=new Blade(this, vector3df(70.71,70.71,-17.5),true);
110 brl_blade=new Blade(this, vector3df(-70.71,-70.71,-17.5),true);
111 brr_blade=new Blade(this, vector3df(-70.71,70.71,-17.5));
112
113 motor_speed_mutex=new Mutex(this);
114 for(int i=0;i<8;i++) motor_speed[i]=0;
115 ExtraDraw();
116 #endif
117}
118
119X8::~X8()
120{
121 //les objets irrlicht seront automatiquement detruits (moteurs, helices, pales) par parenté
122}
123
124#ifdef GL
125void X8::AnimateModel(void)
126{
127 motor_speed_mutex->GetMutex();
128 tfl_blade->SetRotationSpeed(K_MOT*motor_speed[0]);
129 tfr_blade->SetRotationSpeed(-K_MOT*motor_speed[1]);
130 trl_blade->SetRotationSpeed(-K_MOT*motor_speed[2]);
131 trr_blade->SetRotationSpeed(K_MOT*motor_speed[3]);
132
133 bfl_blade->SetRotationSpeed(-K_MOT*motor_speed[4]);
134 bfr_blade->SetRotationSpeed(K_MOT*motor_speed[5]);
135 brl_blade->SetRotationSpeed(K_MOT*motor_speed[6]);
136 brr_blade->SetRotationSpeed(-K_MOT*motor_speed[7]);
137 motor_speed_mutex->ReleaseMutex();
138
139 //adapt UAV size
140 if(arm_length->ValueChanged()==true)
141 {
142 setScale(arm_length->Value());
143 }
144}
145
146size_t X8::dbtSize(void) const
147{
148 return 6*sizeof(float)+4*sizeof(float);//6ddl+4helices
149}
150
151void X8::WritedbtBuf(char* dbtbuf)
152{/*
153 float *buf=(float*)dbtbuf;
154 vector3df vect=getPosition();
155 memcpy(buf,&vect.X,sizeof(float));
156 buf++;
157 memcpy(buf,&vect.Y,sizeof(float));
158 buf++;
159 memcpy(buf,&vect.Z,sizeof(float));
160 buf++;
161 vect=getRotation();
162 memcpy(buf,&vect.X,sizeof(float));
163 buf++;
164 memcpy(buf,&vect.Y,sizeof(float));
165 buf++;
166 memcpy(buf,&vect.Z,sizeof(float));
167 buf++;
168 memcpy(buf,&motors,sizeof(rtsimu_motors));*/
169}
170
171void X8::ReaddbtBuf(char* dbtbuf)
172{/*
173 float *buf=(float*)dbtbuf;
174 vector3df vect;
175 memcpy(&vect.X,buf,sizeof(float));
176 buf++;
177 memcpy(&vect.Y,buf,sizeof(float));
178 buf++;
179 memcpy(&vect.Z,buf,sizeof(float));
180 buf++;
181 setPosition(vect);
182 memcpy(&vect.X,buf,sizeof(float));
183 buf++;
184 memcpy(&vect.Y,buf,sizeof(float));
185 buf++;
186 memcpy(&vect.Z,buf,sizeof(float));
187 buf++;
188 ((ISceneNode*)(this))->setRotation(vect);
189 memcpy(&motors,buf,sizeof(rtsimu_motors));
190 AnimateModele();*/
191}
192#endif //GL
193
194//states are computed on fixed frame NED
195//x north
196//y east
197//z down
198void X8::CalcModel(void)
199{
200 float tfl_speed,tfr_speed,trl_speed,trr_speed;
201 float bfl_speed,bfr_speed,brl_speed,brr_speed;
202 float u_roll,u_pitch,u_yaw,u_thrust;
203 float omega;
204#ifdef GL
205 motor_speed_mutex->GetMutex();
206#endif //GL
207 motors->GetSpeeds(motor_speed);
208#ifdef GL
209 motor_speed_mutex->ReleaseMutex();
210#endif //GL
211 tfl_speed=motor_speed[0];
212 tfr_speed=motor_speed[1];
213 trl_speed=motor_speed[2];
214 trr_speed=motor_speed[3];
215 bfl_speed=motor_speed[4];
216 bfr_speed=motor_speed[5];
217 brl_speed=motor_speed[6];
218 brr_speed=motor_speed[7];
219
220 omega=tfl_speed+brl_speed+trr_speed+bfr_speed-bfl_speed-trl_speed-brr_speed-tfr_speed;
221
222
223 /*
224 ** ===================================================================
225 ** u roll: roll torque
226 **
227 ** ===================================================================
228 */
229
230 u_roll=arm_length->Value()*k_mot->Value()*(sigma->Value()*tfl_speed*tfl_speed+bfl_speed*bfl_speed
231 +sigma->Value()*trl_speed*trl_speed+brl_speed*brl_speed
232 -sigma->Value()*tfr_speed*tfr_speed-bfr_speed*bfr_speed
233 -sigma->Value()*trr_speed*trr_speed-brr_speed*brr_speed)*sqrtf(2)/2;
234
235 /// Classical Nonlinear model of a quadrotor ( This is the w_x angular speed of the quadri in the body frame). It is a discrete integrator
236 //state[0].W.x=(dT()/j_roll->Value())*((j_yaw->Value()-j_pitch->Value())*state[-1].W.y*state[-1].W.z-j_r->Value()*state[-1].W.y*omega + u_roll) +state[-1].W.x;//Osamah
237 state[0].W.x=(dT()/j_roll->Value())*((j_pitch->Value()-j_yaw->Value())*state[-1].W.y*state[-1].W.z-j_r->Value()*state[-1].W.y*omega + u_roll) +state[-1].W.x;//Majd
238
239 //state[0].W.x=(dT()/j_roll->Value())*(u_roll-m->Value()*G*l_cg->Value()*sinf(state[-2].W.x)-f_air_vert->Value()*arm_length->Value()*arm_length->Value()*state[-1].W.x)+state[-1].W.x;
240
241 /*
242 ** ===================================================================
243 ** u pitch : pitch torque
244 **
245 ** ===================================================================
246 */
247 u_pitch=arm_length->Value()*k_mot->Value()*(sigma->Value()*tfl_speed*tfl_speed+bfl_speed*bfl_speed
248 +sigma->Value()*tfr_speed*tfr_speed+bfr_speed*bfr_speed
249 -sigma->Value()*trl_speed*trl_speed-brl_speed*brl_speed
250 -sigma->Value()*trr_speed*trr_speed-brr_speed*brr_speed)*sqrtf(2)/2;
251
252 /// Classical Nonlinear model of a quadrotor ( This is the w_y angular speed of the quadri in the body frame). It is a discrete integrator
253 //state[0].W.y=(dT()/j_pitch->Value())*((j_roll->Value()-j_yaw->Value())*state[-1].W.x*state[-1].W.z-j_r->Value()*state[-1].W.x*omega + u_pitch)+state[-1].W.y;//Osamah
254 state[0].W.y=(dT()/j_pitch->Value())*((j_yaw->Value()-j_roll->Value())*state[-1].W.x*state[-1].W.z-j_r->Value()*state[-1].W.x*omega + u_pitch)+state[-1].W.y;//Majd
255
256 //state[0].W.y=(dT()/j_pitch->Value())*(u_pitch-m->Value()*G*l_cg->Value()*sinf(state[-2].W.y)-f_air_vert->Value()*arm_length->Value()*arm_length->Value()*state[-1].W.y)+state[-1].W.y;
257
258 /*
259 ** ===================================================================
260 ** u yaw : yaw torque
261 **
262 ** ===================================================================
263 */
264 u_yaw=c_mot->Value()*(tfl_speed*tfl_speed-bfl_speed*bfl_speed
265 +trr_speed*trr_speed-brr_speed*brr_speed
266 -tfr_speed*tfr_speed+bfr_speed*bfr_speed
267 -trl_speed*trl_speed+brl_speed*brl_speed);
268
269 /// Classical Nonlinear model of a quadrotor ( This is the w_z angular speed of the quadri in the body frame). It is a discrete integrator
270 //state[0].W.z=(dT()/j_yaw->Value())* u_yaw +state[-1].W.z;//Osamah
271 state[0].W.z=(dT()/j_yaw->Value())*((j_roll->Value()-j_pitch->Value())*state[-1].W.x*state[-1].W.y+u_yaw )+state[-1].W.z;//Majd
272
273 //state[0].W.z=(dT()/j_yaw->Value())*(u_yaw-f_air_lat->Value()*state[-1].W.z)+state[-1].W.z;
274
275 // compute quaternion from W
276 // Quaternion derivative: dQ = 0.5*(Q*Qw)
277 Quaternion dQ=state[-1].Quat.GetDerivative(state[0].W);
278
279 // Quaternion integration
280 state[0].Quat =state[-1].Quat +dQ*dT();
281 state[0].Quat.Normalize();
282
283 // Calculation of the thrust from the reference speed of motors
284 u_thrust=k_mot->Value()*S->Value()*
285 (sigma->Value()*tfl_speed*tfl_speed+sigma->Value()*tfr_speed*tfr_speed+sigma->Value()*trl_speed*trl_speed+sigma->Value()*trr_speed*trr_speed
286 +bfl_speed*bfl_speed+bfr_speed*bfr_speed+brl_speed*brl_speed+brr_speed*brr_speed);
287 Vector3D vect(0,0,-u_thrust);
288 vect.Rotate(state[0].Quat);
289
290 /*
291 ** ===================================================================
292 ** x double integrator
293 **
294 ** ===================================================================
295 */
296 state[0].Pos.x=(dT()*dT()/m->Value())*(vect.x-f_air_lat->Value()*(state[-1].Pos.x-state[-2].Pos.x)/dT())+2*state[-1].Pos.x-state[-2].Pos.x;
297 state[0].Vel.x=(state[0].Pos.x-state[-1].Pos.x)/dT();
298
299 /*
300 ** ===================================================================
301 ** y double integrator
302 **
303 ** ===================================================================
304 */
305 state[0].Pos.y=(dT()*dT()/m->Value())*(vect.y-f_air_lat->Value()*(state[-1].Pos.y-state[-2].Pos.y)/dT())+2*state[-1].Pos.y-state[-2].Pos.y;
306 state[0].Vel.y=(state[0].Pos.y-state[-1].Pos.y)/dT();
307
308 /*
309 ** ===================================================================
310 ** z double integrator
311 **
312 ** ===================================================================
313 */
314 state[0].Pos.z=(dT()*dT()/m->Value())*(vect.z+f_air_vert->Value()*(state[-1].Pos.z-state[-2].Pos.z)/dT()+m->Value()*G)+2*state[-1].Pos.z-state[-2].Pos.z;
315 state[0].Vel.z=(state[0].Pos.z-state[-1].Pos.z)/dT();
316
317#ifndef GL
318 if(state[0].Pos.z<0) state[0].Pos.z=0;
319#endif
320
321}
322
323} // end namespace simulator
324} // end namespace flair
Note: See TracBrowser for help on using the repository browser.