1 | // %pacpus:license{
|
---|
2 | // This file is part of the PACPUS framework distributed under the
|
---|
3 | // CECILL-C License, Version 1.0.
|
---|
4 | // %}
|
---|
5 | /// @file
|
---|
6 | /// @author Firstname Surname <firstname.surname@utc.fr>
|
---|
7 | /// @date Month, Year
|
---|
8 | /// @version $Id: geodesie.h 75 2013-01-10 17:04:19Z kurdejma $
|
---|
9 | /// @copyright Copyright (c) UTC/CNRS Heudiasyc 2006 - 2013. All rights reserved.
|
---|
10 | /// @brief Brief description.
|
---|
11 | ///
|
---|
12 | /// Detailed description.
|
---|
13 |
|
---|
14 | #ifndef GEODESIE_H
|
---|
15 | #define GEODESIE_H
|
---|
16 |
|
---|
17 | #include <cmath>
|
---|
18 | #include <iostream>
|
---|
19 | #include <vector>
|
---|
20 |
|
---|
21 | #include <QMatrix4x4>
|
---|
22 | #include <QVector3D>
|
---|
23 |
|
---|
24 | #include "PacpusToolsConfig.h"
|
---|
25 |
|
---|
26 | namespace Geodesie {
|
---|
27 |
|
---|
28 | #ifndef M_PI
|
---|
29 | # define M_PI 3.14159265358979323846
|
---|
30 | #endif
|
---|
31 | #ifndef M_PI_2
|
---|
32 | # define M_PI_2 1.57079632679489661923
|
---|
33 | #endif
|
---|
34 | #ifndef M_PI_4
|
---|
35 | # define M_PI_4 0.78539816339744830962
|
---|
36 | #endif
|
---|
37 |
|
---|
38 | /// 9x9 matrix ???
|
---|
39 | ///
|
---|
40 | /// @todo Documentation
|
---|
41 | /// @todo Rewrite!
|
---|
42 | struct PACPUS_TOOLS_API Matrice
|
---|
43 | {
|
---|
44 | /// Copy ctor
|
---|
45 | Matrice(const Matrice & A);
|
---|
46 | /// Ctor
|
---|
47 | Matrice();
|
---|
48 | /// @todo Documentation
|
---|
49 | void Apply(double v0, double v1, double v2, double & Mv0, double & Mv1, double & Mv2);
|
---|
50 |
|
---|
51 | /// @todo Documentation
|
---|
52 | double c0_l0;
|
---|
53 | /// @todo Documentation
|
---|
54 | double c1_l0;
|
---|
55 | /// @todo Documentation
|
---|
56 | double c2_l0;
|
---|
57 |
|
---|
58 | /// @todo Documentation
|
---|
59 | double c0_l1;
|
---|
60 | /// @todo Documentation
|
---|
61 | double c1_l1;
|
---|
62 | /// @todo Documentation
|
---|
63 | double c2_l1;
|
---|
64 |
|
---|
65 | /// @todo Documentation
|
---|
66 | double c0_l2;
|
---|
67 | /// @todo Documentation
|
---|
68 | double c1_l2;
|
---|
69 | /// @todo Documentation
|
---|
70 | double c2_l2;
|
---|
71 | };
|
---|
72 |
|
---|
73 | Matrice TransMat(const Matrice A);
|
---|
74 |
|
---|
75 | Matrice ProdMat(const Matrice A,const Matrice B);
|
---|
76 | void Write(const Matrice A,std::ostream& out);
|
---|
77 |
|
---|
78 | ////////////////////////////////////////////////////////////////////////
|
---|
79 | /// @todo Documentation
|
---|
80 | class PACPUS_TOOLS_API Raf98
|
---|
81 | {
|
---|
82 | public:
|
---|
83 | /// Ctor of Raf98 class.
|
---|
84 | Raf98() {}
|
---|
85 | /// Dtor of Raf98 class.
|
---|
86 | ~Raf98();
|
---|
87 |
|
---|
88 | /// @todo Documentation
|
---|
89 | /// @param s filepath
|
---|
90 | bool Load(const std::string & s);
|
---|
91 |
|
---|
92 | /// @todo Documentation
|
---|
93 | /// @param longitude [degrees]
|
---|
94 | /// @param latitude [degrees]
|
---|
95 | /// @param Hwgs84 Output: interpolated altitude using WGS84 geoid model [meters]
|
---|
96 | bool Interpol(double longitude/*deg*/, double latitude/*deg*/, double* Hwgs84) const;
|
---|
97 |
|
---|
98 | private:
|
---|
99 | std::vector<double> m_dvalues;
|
---|
100 | double LitGrille(unsigned int c,unsigned int l) const;
|
---|
101 | };
|
---|
102 |
|
---|
103 | ////////////////////////////////////////////////////////////////////////
|
---|
104 |
|
---|
105 | ////////////////////////////////////////////////////////////////////////
|
---|
106 | inline double Deg2Rad(double deg) {return deg*M_PI/180.0;}
|
---|
107 | inline double Rad2Deg(double rad) {return rad*180.0/M_PI;}
|
---|
108 | ////////////////////////////////////////////////////////////////////////
|
---|
109 |
|
---|
110 | const double a_Lambert93=6378137;
|
---|
111 | const double f_Lambert93=1 / 298.257222101;
|
---|
112 | const double e_Lambert93=sqrt(f_Lambert93*(2-f_Lambert93));
|
---|
113 | const double lambda0_Lambert93=Deg2Rad(3.0);//degres
|
---|
114 | const double phi0_Lambert93=Deg2Rad(46.5);
|
---|
115 | const double phi1_Lambert93=Deg2Rad(44.0);
|
---|
116 | const double phi2_Lambert93=Deg2Rad(49.0);//degres
|
---|
117 | const double X0_Lambert93=700000;//
|
---|
118 | const double Y0_Lambert93=6600000;//
|
---|
119 | const double n_Lambert93 = 0.7256077650;
|
---|
120 | const double c_Lambert93 = 11754255.426;
|
---|
121 | const double xs_Lambert93 = 700000;
|
---|
122 | const double ys_Lambert93 = 12655612.050;
|
---|
123 |
|
---|
124 | const double GRS_a = 6378137;
|
---|
125 | const double GRS_f = 1/298.257222101;
|
---|
126 | const double GRS_b = GRS_a*(1-GRS_f);
|
---|
127 | const double GRS_e = sqrt((pow(GRS_a,2) - pow(GRS_b,2)) / pow(GRS_a,2));
|
---|
128 |
|
---|
129 | ////////////////////////////////////////////////////////////////////////
|
---|
130 | void Geographique_2_Lambert93(const Raf98& raf98,double lambda,double phi,double he,Matrice in,double& E,double& N,double& h,Matrice& out);
|
---|
131 | void Geographique_2_Lambert93(const Raf98& raf98,double lambda,double phi,double he,double& E,double& N,double& h);
|
---|
132 | void Lambert93_2_Geographique(const Raf98& raf98,double E,double N,double h,double& lambda,double& phi,double& he);
|
---|
133 | void Lambert93_2_Geographique(const Raf98& raf98,double E,double N,double h,Matrice in,double& lambda,double& phi,double& he,Matrice& out);
|
---|
134 | /** Convert from geographique to ECEF.
|
---|
135 | * @param[in] longitude Longitude in radian.
|
---|
136 | * @param[in] latitude Latitude in radian.
|
---|
137 | * @param[in] he Height in meter.
|
---|
138 | */
|
---|
139 | void Geographique_2_ECEF(double longitude, double latitude, double he, double& x, double& y, double& z);
|
---|
140 | /** Convert from ECEF two ENU.
|
---|
141 | * @param[in] lon0 Longitude of the origin in radian.
|
---|
142 | * @param[in] lat0 Latitude of the origin in radian.
|
---|
143 | * @param[in] he0 Height of the origin in radian.
|
---|
144 | */
|
---|
145 | void ECEF_2_ENU(double x,double y,double z,double& e,double& n,double& u,double lon0,double lat0,double he0);
|
---|
146 | ////////////////////////////////////////////////////////////////////////
|
---|
147 |
|
---|
148 | ///ALGO0001
|
---|
149 | /// @todo Rename
|
---|
150 | double LatitueIsometrique(double latitude,double e);
|
---|
151 | ///ALGO0002
|
---|
152 | /// @todo Rename
|
---|
153 | double LatitueIsometrique2Lat(double latitude_iso,double e,double epsilon);
|
---|
154 |
|
---|
155 | ///ALGO0003
|
---|
156 | void Geo2ProjLambert(
|
---|
157 | double lambda,double phi,
|
---|
158 | double n, double c,double e,
|
---|
159 | double lambdac,double xs,double ys,
|
---|
160 | double& X,double& Y);
|
---|
161 | ///ALGO0004
|
---|
162 | void Proj2GeoLambert(
|
---|
163 | double X,double Y,
|
---|
164 | double n, double c,double e,
|
---|
165 | double lambdac,double xs,double ys,
|
---|
166 | double epsilon,
|
---|
167 | double& lambda,double& phi);
|
---|
168 |
|
---|
169 | double ConvMerApp(double longitude);
|
---|
170 |
|
---|
171 | /**
|
---|
172 | Converts Cartesian (x, y) coordinates to polar coordinates (r, theta)
|
---|
173 | */
|
---|
174 | template <typename _T1, typename _T2>
|
---|
175 | void cartesianToPolar(const _T1 x, const _T1 y, _T2 & r, _T2 & theta) {
|
---|
176 | r = std::sqrt(x*x + y*y);
|
---|
177 | theta = std::atan2(x, y);
|
---|
178 | }
|
---|
179 |
|
---|
180 | /**
|
---|
181 | Converts polar coordinates (r, theta) to Cartesian (x, y) coordinates
|
---|
182 | */
|
---|
183 | template <typename _T1, typename _T2>
|
---|
184 | void polarToCartesian(const _T1 r, const _T1 theta, _T2 & x, _T2 & y) {
|
---|
185 | x = r * std::cos(theta);
|
---|
186 | y = r * std::sin(theta);
|
---|
187 | }
|
---|
188 |
|
---|
189 | /**
|
---|
190 | Converts Cartesian (x, y, z) coordinates to spherical coordinates (r, theta, phi)
|
---|
191 | Angles expressed in radians.
|
---|
192 | */
|
---|
193 | template <typename _T1, typename _T2>
|
---|
194 | void cartesianToSpherical(const _T1 x, const _T1 y, const _T1 z, _T2 & r, _T2 & theta, _T2 & phi) {
|
---|
195 | r = std::sqrt(x*x + y*y + z*z);
|
---|
196 | theta = std::acos(z / r);
|
---|
197 | phi = std::atan2(y, x);
|
---|
198 | }
|
---|
199 |
|
---|
200 | /**
|
---|
201 | Converts spherical coordinates (r, theta, phi) to Cartesian (x, y, z) coordinates.
|
---|
202 | Angles expressed in radians.
|
---|
203 | */
|
---|
204 | template <typename _T1, typename _T2>
|
---|
205 | void sphericalToCartesian(const _T1 r, const _T1 theta, const _T1 phi, _T2 & x, _T2 & y, _T2 & z) {
|
---|
206 | x = r * std::sin(theta) * std::cos(phi);
|
---|
207 | y = r * std::sin(theta) * std::sin(phi);
|
---|
208 | z = r * std::cos(theta);
|
---|
209 | }
|
---|
210 |
|
---|
211 | QMatrix4x4 yprenuToMatrix(QVector3D angle, QVector3D position);
|
---|
212 |
|
---|
213 | } // namespace Geodesie
|
---|
214 |
|
---|
215 | #endif // GEODESIE_H
|
---|