1 | // This file is part of the PACPUS framework distributed under the
|
---|
2 | // CECILL-C License, Version 1.0.
|
---|
3 | //
|
---|
4 | /// @author Firstname Surname <firstname.surname@utc.fr>
|
---|
5 | /// @date Month, Year
|
---|
6 | /// @version $Id$
|
---|
7 | /// @copyright Copyright (c) UTC/CNRS Heudiasyc 2006 - 2013. All rights reserved.
|
---|
8 | /// @brief Brief description.
|
---|
9 | ///
|
---|
10 | /// Detailed description.
|
---|
11 |
|
---|
12 | #ifndef GEODESIE_H
|
---|
13 | #define GEODESIE_H
|
---|
14 |
|
---|
15 | #include <cmath>
|
---|
16 | #include <iostream>
|
---|
17 | #include <vector>
|
---|
18 |
|
---|
19 | namespace Geodesie {
|
---|
20 |
|
---|
21 | #ifndef M_PI
|
---|
22 | # define M_PI 3.14159265358979323846
|
---|
23 | #endif
|
---|
24 | #ifndef M_PI_2
|
---|
25 | # define M_PI_2 1.57079632679489661923
|
---|
26 | #endif
|
---|
27 | #ifndef M_PI_4
|
---|
28 | # define M_PI_4 0.78539816339744830962
|
---|
29 | #endif
|
---|
30 |
|
---|
31 | ////////////////////////////////////////////////////////////////////////
|
---|
32 | struct Matrice {
|
---|
33 | Matrice(const Matrice & A);
|
---|
34 | Matrice();
|
---|
35 | void Apply(double v0, double v1, double v2, double & Mv0, double & Mv1, double & Mv2);
|
---|
36 | double c0_l0;double c1_l0;double c2_l0;
|
---|
37 | double c0_l1;double c1_l1;double c2_l1;
|
---|
38 | double c0_l2;double c1_l2;double c2_l2;
|
---|
39 | }; // class
|
---|
40 |
|
---|
41 | Matrice TransMat(const Matrice A);
|
---|
42 |
|
---|
43 | Matrice ProdMat(const Matrice A,const Matrice B);
|
---|
44 | void Write(const Matrice A,std::ostream& out);
|
---|
45 |
|
---|
46 | ////////////////////////////////////////////////////////////////////////
|
---|
47 | class Raf98 {
|
---|
48 | private :
|
---|
49 | std::vector<double> m_dvalues;
|
---|
50 | double LitGrille(unsigned int c,unsigned int l) const;
|
---|
51 | public :
|
---|
52 | ~Raf98();
|
---|
53 | Raf98() {}
|
---|
54 | bool Load(const std::string & s);
|
---|
55 | bool Interpol(double longitude/*deg*/, double latitude/*deg*/, double* Hwgs84) const;
|
---|
56 | }; // class
|
---|
57 | ////////////////////////////////////////////////////////////////////////
|
---|
58 |
|
---|
59 | ////////////////////////////////////////////////////////////////////////
|
---|
60 | inline double Deg2Rad(double deg) {return deg*M_PI/180.0;}
|
---|
61 | inline double Rad2Deg(double rad) {return rad*180.0/M_PI;}
|
---|
62 | ////////////////////////////////////////////////////////////////////////
|
---|
63 |
|
---|
64 | const double a_Lambert93=6378137;
|
---|
65 | const double f_Lambert93=1 / 298.257222101;
|
---|
66 | const double e_Lambert93=sqrt(f_Lambert93*(2-f_Lambert93));
|
---|
67 | const double lambda0_Lambert93=Deg2Rad(3.0);//degres
|
---|
68 | const double phi0_Lambert93=Deg2Rad(46.5);
|
---|
69 | const double phi1_Lambert93=Deg2Rad(44.0);
|
---|
70 | const double phi2_Lambert93=Deg2Rad(49.0);//degres
|
---|
71 | const double X0_Lambert93=700000;//
|
---|
72 | const double Y0_Lambert93=6600000;//
|
---|
73 | const double n_Lambert93 = 0.7256077650;
|
---|
74 | const double c_Lambert93 = 11754255.426;
|
---|
75 | const double xs_Lambert93 = 700000;
|
---|
76 | const double ys_Lambert93 = 12655612.050;
|
---|
77 |
|
---|
78 | const double GRS_a = 6378137;
|
---|
79 | const double GRS_f = 1/298.257222101;
|
---|
80 | const double GRS_b = GRS_a*(1-GRS_f);
|
---|
81 | const double GRS_e = sqrt((pow(GRS_a,2) - pow(GRS_b,2)) / pow(GRS_a,2));
|
---|
82 |
|
---|
83 | ////////////////////////////////////////////////////////////////////////
|
---|
84 | void Geographique_2_Lambert93(const Raf98& raf98,double lambda,double phi,double he,Matrice in,double& E,double& N,double& h,Matrice& out);
|
---|
85 | void Geographique_2_Lambert93(const Raf98& raf98,double lambda,double phi,double he,double& E,double& N,double& h);
|
---|
86 | void Lambert93_2_Geographique(const Raf98& raf98,double E,double N,double h,double& lambda,double& phi,double& he);
|
---|
87 | void Lambert93_2_Geographique(const Raf98& raf98,double E,double N,double h,Matrice in,double& lambda,double& phi,double& he,Matrice& out);
|
---|
88 | /** Convert from geographique to ECEF.
|
---|
89 | * @param[in] longitude Longitude in radian.
|
---|
90 | * @param[in] latitude Latitude in radian.
|
---|
91 | * @param[in] he Height in meter.
|
---|
92 | */
|
---|
93 | void Geographique_2_ECEF(double longitude, double latitude, double he, double& x, double& y, double& z);
|
---|
94 | /** Convert from ECEF two ENU.
|
---|
95 | * @param[in] lon0 Longitude of the origin in radian.
|
---|
96 | * @param[in] lat0 Latitude of the origin in radian.
|
---|
97 | * @param[in] he0 Height of the origin in radian.
|
---|
98 | */
|
---|
99 | void ECEF_2_ENU(double x,double y,double z,double& e,double& n,double& u,double lon0,double lat0,double he0);
|
---|
100 | ////////////////////////////////////////////////////////////////////////
|
---|
101 |
|
---|
102 | //ALGO0001
|
---|
103 | double LatitueIsometrique(double latitude,double e);
|
---|
104 | //ALGO0002
|
---|
105 | double LatitueIsometrique2Lat(double latitude_iso,double e,double epsilon);
|
---|
106 |
|
---|
107 | //ALGO0003
|
---|
108 | void Geo2ProjLambert(
|
---|
109 | double lambda,double phi,
|
---|
110 | double n, double c,double e,
|
---|
111 | double lambdac,double xs,double ys,
|
---|
112 | double& X,double& Y);
|
---|
113 | //ALGO0004
|
---|
114 | void Proj2GeoLambert(
|
---|
115 | double X,double Y,
|
---|
116 | double n, double c,double e,
|
---|
117 | double lambdac,double xs,double ys,
|
---|
118 | double epsilon,
|
---|
119 | double& lambda,double& phi);
|
---|
120 |
|
---|
121 | double ConvMerApp(double longitude);
|
---|
122 |
|
---|
123 | /**
|
---|
124 | Converts Cartesian (x, y) coordinates to polar coordinates (r, theta)
|
---|
125 | */
|
---|
126 | template <typename _T1, typename _T2>
|
---|
127 | void cartesianToPolar(const _T1 x, const _T1 y, _T2 & r, _T2 & theta) {
|
---|
128 | r = std::sqrt(x*x + y*y);
|
---|
129 | theta = std::atan2(x, y);
|
---|
130 | }
|
---|
131 |
|
---|
132 | /**
|
---|
133 | Converts polar coordinates (r, theta) to Cartesian (x, y) coordinates
|
---|
134 | */
|
---|
135 | template <typename _T1, typename _T2>
|
---|
136 | void polarToCartesian(const _T1 r, const _T1 theta, _T2 & x, _T2 & y) {
|
---|
137 | x = r * std::cos(theta);
|
---|
138 | y = r * std::sin(theta);
|
---|
139 | }
|
---|
140 |
|
---|
141 | /**
|
---|
142 | Converts Cartesian (x, y, z) coordinates to spherical coordinates (r, theta, phi)
|
---|
143 | Angles expressed in radians.
|
---|
144 | */
|
---|
145 | template <typename _T1, typename _T2>
|
---|
146 | void cartesianToSpherical(const _T1 x, const _T1 y, const _T1 z, _T2 & r, _T2 & theta, _T2 & phi) {
|
---|
147 | r = std::sqrt(x*x + y*y + z*z);
|
---|
148 | theta = std::acos(z / r);
|
---|
149 | phi = std::atan2(y, x);
|
---|
150 | }
|
---|
151 |
|
---|
152 | /**
|
---|
153 | Converts spherical coordinates (r, theta, phi) to Cartesian (x, y, z) coordinates.
|
---|
154 | Angles expressed in radians.
|
---|
155 | */
|
---|
156 | template <typename _T1, typename _T2>
|
---|
157 | void sphericalToCartesian(const _T1 r, const _T1 theta, const _T1 phi, _T2 & x, _T2 & y, _T2 & z) {
|
---|
158 | x = r * std::sin(theta) * std::cos(phi);
|
---|
159 | y = r * std::sin(theta) * std::sin(phi);
|
---|
160 | z = r * std::cos(theta);
|
---|
161 | }
|
---|
162 |
|
---|
163 | } // namespace Geodesie
|
---|
164 |
|
---|
165 | #endif // GEODESIE_H
|
---|