1 | #ifndef __DISTRIBUTIONS_HPP__
|
---|
2 | #define __DISTRIBUTIONS_HPP__
|
---|
3 |
|
---|
4 | #include "ublas.hpp"
|
---|
5 | #include <boost/math/distributions.hpp>
|
---|
6 |
|
---|
7 | namespace math{
|
---|
8 | namespace distributions{
|
---|
9 |
|
---|
10 |
|
---|
11 | template <class RealType>
|
---|
12 | inline RealType pdf(const boost::math::normal_distribution<RealType> & dist , boost::numeric::ublas::vector<RealType> & v){
|
---|
13 | return pdf(dist,v[0]);
|
---|
14 | }
|
---|
15 |
|
---|
16 | template <class RealType>
|
---|
17 | inline RealType pdf(const boost::math::uniform_distribution<RealType> & dist , boost::numeric::ublas::vector<RealType> & v){
|
---|
18 | return pdf(dist,v[0]);
|
---|
19 | }
|
---|
20 |
|
---|
21 |
|
---|
22 | /*!
|
---|
23 | *\class multivariate_normal_distribution
|
---|
24 | *\brief This clas describes a multivariate normal distribution
|
---|
25 | */
|
---|
26 | template < class RealType =double >
|
---|
27 | class multivariate_normal_distribution{
|
---|
28 | public :
|
---|
29 |
|
---|
30 | /*!
|
---|
31 | *\brief Default constructor
|
---|
32 | */
|
---|
33 | multivariate_normal_distribution(boost::numeric::ublas::vector<RealType> mean,boost::numeric::ublas::matrix<RealType> cov){
|
---|
34 |
|
---|
35 | using namespace boost::numeric::ublas;
|
---|
36 |
|
---|
37 | if(mean.size()==cov.size1() && mean.size()==cov.size2()){
|
---|
38 | m_mean=mean;
|
---|
39 | m_cov=cov;
|
---|
40 | }else throw math_error("Multivariate normal distribution : the mean vector of covariance matrix must have the same size");
|
---|
41 |
|
---|
42 |
|
---|
43 | typedef permutation_matrix<std::size_t> pmatrix;
|
---|
44 | // create a working copy of the input
|
---|
45 | matrix<RealType> A(m_cov);
|
---|
46 | // create a permutation matrix for the LU-factorization
|
---|
47 | pmatrix pm(A.size1());
|
---|
48 | // perform LU-factorization
|
---|
49 | int res = lu_factorize(A,pm);
|
---|
50 | if( res != 0 ) throw math_error("Pdf function : covariance matrix is a singular matrix");
|
---|
51 |
|
---|
52 | // create identity matrix of "inverse"
|
---|
53 | m_invcov = identity_matrix<double>(A.size1());
|
---|
54 | // backsubstitute to get the inverse
|
---|
55 | lu_substitute(A, pm, invcov);
|
---|
56 |
|
---|
57 | //compute determinant
|
---|
58 | m_detcov = 1.0;
|
---|
59 | for (std::size_t i=0; i < pm.size(); ++i) {
|
---|
60 | if (pm(i) != i)
|
---|
61 | m_detcov *= -1.0;
|
---|
62 | m_detcov *= A(i,i);
|
---|
63 | }
|
---|
64 |
|
---|
65 | }
|
---|
66 |
|
---|
67 | /*!
|
---|
68 | *\brief Get the inversion of covariance matrix
|
---|
69 | */
|
---|
70 | boost::numeric::ublas::matrix<RealType> invcov() const {
|
---|
71 | return m_invcov;
|
---|
72 | }
|
---|
73 |
|
---|
74 | /*!
|
---|
75 | *\brief Get determinant of covariance matrix
|
---|
76 | */
|
---|
77 | boost::numeric::ublas::matrix<RealType> detcov() const {
|
---|
78 | return m_detcov;
|
---|
79 | }
|
---|
80 |
|
---|
81 |
|
---|
82 | /*!
|
---|
83 | *\brief Get mean vector
|
---|
84 | */
|
---|
85 | boost::numeric::ublas::vector<RealType> mean() const {
|
---|
86 | return m_mean;
|
---|
87 | }
|
---|
88 |
|
---|
89 | /*!
|
---|
90 | *\brief Get covariance matrix
|
---|
91 | */
|
---|
92 | boost::numeric::ublas::matrix<RealType> cov() const {
|
---|
93 | return m_cov;
|
---|
94 | }
|
---|
95 |
|
---|
96 |
|
---|
97 |
|
---|
98 |
|
---|
99 | private :
|
---|
100 |
|
---|
101 |
|
---|
102 |
|
---|
103 |
|
---|
104 | /*!
|
---|
105 | *\brief mean vector
|
---|
106 | */
|
---|
107 | boost::numeric::ublas::vector<RealType> m_mean;
|
---|
108 |
|
---|
109 | /*!
|
---|
110 | *\brief covariance matrix
|
---|
111 | */
|
---|
112 | boost::numeric::ublas::matrix<RealType> m_cov;
|
---|
113 |
|
---|
114 |
|
---|
115 | /*!
|
---|
116 | *\brief covar
|
---|
117 | */
|
---|
118 | boost::numeric::ublas::matrix<RealType> m_invcov;
|
---|
119 |
|
---|
120 | /*!
|
---|
121 | *\brief cov matrix
|
---|
122 | */
|
---|
123 | double m_detcov;
|
---|
124 |
|
---|
125 | };
|
---|
126 |
|
---|
127 | typedef multivariate_normal_distribution<double> mvnormal;
|
---|
128 |
|
---|
129 |
|
---|
130 | /*!
|
---|
131 | *\fn inline RealType pdf(const multivariate_normal_distribution<RealType>& dist, const boost::numeric::ublas::vector<RealType> & x)
|
---|
132 | *\brief Compute probability density function for a multivariate normal distribution
|
---|
133 | */
|
---|
134 | template <class RealType>
|
---|
135 | inline RealType pdf(const multivariate_normal_distribution<RealType>& dist, const boost::numeric::ublas::vector<RealType> & x)
|
---|
136 | {
|
---|
137 |
|
---|
138 | boost::numeric::ublas::vector<RealType> mean = dist.mean();
|
---|
139 | boost::numeric::ublas::matrix<RealType> cov= dist.cov();
|
---|
140 | boost::numeric::ublas::matrix<RealType> invcov =dist.invcov();
|
---|
141 | double detcov= dist.detcov;
|
---|
142 |
|
---|
143 |
|
---|
144 | RealType exponent = - Dot(x-mean, invcov*(x-mean));
|
---|
145 | exponent /= 2 ;
|
---|
146 |
|
---|
147 | RealType result = std::exp(exponent);
|
---|
148 | result /= std::sqrt(pow(2*M_PI,mean.size())*std::abs(detcov));
|
---|
149 |
|
---|
150 | return result;
|
---|
151 | } // pdf
|
---|
152 |
|
---|
153 |
|
---|
154 | /*!
|
---|
155 | *\class multivariate_uniform_distribution
|
---|
156 | *\brief This clas describes a multivariate normal distribution
|
---|
157 | */
|
---|
158 | template < class RealType =double >
|
---|
159 | class multivariate_uniform_distribution{
|
---|
160 | public :
|
---|
161 |
|
---|
162 | /*!
|
---|
163 | *\brief Default constructor
|
---|
164 | */
|
---|
165 | multivariate_uniform_distribution(boost::numeric::ublas::vector<RealType> lower,boost::numeric::ublas::matrix<RealType> upper){
|
---|
166 |
|
---|
167 | if(upper.size()!= lower.size()) throw math_error("Multivariate uniform distribution : the upper vector and the loxer vector must have the same size");
|
---|
168 | for (size_t i=0;i<upper.size();i++)
|
---|
169 | if(lower[i]>upper[i]) throw math_error("Multivariate uniform distribution : the lower vector is not lower than upper vector");
|
---|
170 |
|
---|
171 | m_lower=lower;
|
---|
172 | m_upper=upper;
|
---|
173 | }
|
---|
174 | private :
|
---|
175 |
|
---|
176 | /*!
|
---|
177 | *\brief Lower vector
|
---|
178 | */
|
---|
179 | boost::numeric::ublas::vector<RealType> m_lower;
|
---|
180 |
|
---|
181 | /*!
|
---|
182 | *\brief Upper vector
|
---|
183 | */
|
---|
184 | boost::numeric::ublas::matrix<RealType> m_upper;
|
---|
185 |
|
---|
186 | };
|
---|
187 |
|
---|
188 | typedef multivariate_normal_distribution<double> mvuniform;
|
---|
189 |
|
---|
190 |
|
---|
191 | /*!
|
---|
192 | *\fn inline RealType pdf(const multivariate_uniform_distribution<RealType>& dist, const boost::numeric::ublas::vector<RealType> & x)
|
---|
193 | *\brief Compute probability density function for a multivariate uniform distribution
|
---|
194 | */
|
---|
195 | template <class RealType>
|
---|
196 | inline RealType pdf(const multivariate_uniform_distribution<RealType>& dist, const boost::numeric::ublas::vector<RealType> & x)
|
---|
197 | {
|
---|
198 |
|
---|
199 | double result =1;
|
---|
200 |
|
---|
201 | boost::numeric::ublas::vector<RealType> upper = dist.upper();
|
---|
202 | boost::numeric::ublas::matrix<RealType> lower= dist.lower();
|
---|
203 |
|
---|
204 |
|
---|
205 | for(size_t i=0;i<upper.size();i++){
|
---|
206 | if(x<upper[i] && x[i]>lower[i]) result/=(upper[i]-lower[i]);
|
---|
207 | else {result=0; break;}
|
---|
208 | }
|
---|
209 |
|
---|
210 | return result;
|
---|
211 | } // pdf
|
---|
212 |
|
---|
213 | };
|
---|
214 | };
|
---|
215 | #endif
|
---|