source: pacpusframework/trunk/include/Pacpus/PacpusTools/math/ublas.hpp@ 18

Last change on this file since 18 was 3, checked in by sgosseli, 12 years ago
  • Add the existing Pacpus files from pacpusdev and pacpuscore.
  • Provide a clean build system based on multiple CMake files.
File size: 12.2 KB
Line 
1#ifndef __BOOST_UBLAS__
2#define __BOOST_UBLAS__
3
4#include <boost/numeric/ublas/vector.hpp>
5#include <boost/numeric/ublas/matrix.hpp>
6
7#include <boost/numeric/ublas/lu.hpp>
8#include <boost/numeric/ublas/vector_proxy.hpp>
9#include <boost/numeric/ublas/triangular.hpp>
10#include <boost/numeric/ublas/lu.hpp>
11#include <boost/numeric/ublas/io.hpp>
12
13#include <cmath>
14#include "math_exception.hpp"
15
16namespace math {
17
18 namespace ublas {
19
20 /*!
21 *\fn typedef boost::numeric::ublas::matrix<double> Matrix
22 * \brief Definition of a matrix using double precision
23 */
24 typedef boost::numeric::ublas::matrix<double> Matrix;
25 /*!
26 *\fn typedef boost::numeric::ublas::vector<double> Vector
27 * \brief Definition of a vector using double precision
28 */
29 typedef boost::numeric::ublas::vector<double> Vector;
30 /*!
31 *\fn typedef boost::numeric::ublas::zero_vector<double> ZeroVector;
32 * \brief Definition of empty vector using double precision
33 */
34 typedef boost::numeric::ublas::zero_vector<double> ZeroVector;
35 /*!
36 *\fn typedef boost::numeric::ublas::zero_matrix<double> ZeroMatrix;
37 * \brief Definition of empty matrix using double precision
38 */
39 typedef boost::numeric::ublas::zero_matrix<double> ZeroMatrix;
40
41 /*!
42 * \fn inline boost::numeric::ublas::matrix<T> operator *(const boost::numeric::ublas::matrix<T> & m1, const boost::numeric::ublas::matrix<T> & m2)
43 * \brief multiplication of two matrices
44 * \param m1 : ublas matrix
45 * \param m2 : ublas matrix
46 * \return ublas matrix
47 */
48 template<class T> inline boost::numeric::ublas::matrix<T> operator *(const boost::numeric::ublas::matrix<T> & m1, const boost::numeric::ublas::matrix<T> & m2)
49 {
50 return prod(m1,m2);
51 }
52
53 /*!
54 * \fn inline boost::numeric::ublas::vector<T> operator *(const boost::numeric::ublas::matrix<T> & m, const boost::numeric::ublas::vector<T> & v)
55 * \brief product of a vector by a matrix
56 * \param m : ublas matrix
57 * \param v : ublas vector
58 * \return ublas vector
59 */
60 template<class T> inline boost::numeric::ublas::vector<T> operator *(const boost::numeric::ublas::matrix<T> & m, const boost::numeric::ublas::vector<T> & v)
61 {
62 return prod(m,v);
63 }
64
65 /*!
66 * \fn inline boost::numeric::ublas::vector<T> operator +(const boost::numeric::ublas::vector<T> & v1, const boost::numeric::ublas::vector<T> & v2)
67 * \brief addition of two vectors
68 * \param v1 : ublas vector
69 * \param v2 : ublas vector
70 * \return ublas vector
71 */
72 template<class T> inline boost::numeric::ublas::vector<T> operator +(const boost::numeric::ublas::vector<T> & v1, const boost::numeric::ublas::vector<T> & v2)
73 {
74 boost::numeric::ublas::vector<T> tmp = v1;
75 return tmp+=v2;
76 }
77
78 /*!
79 * \fn inline boost::numeric::ublas::vector<T> operator -(const boost::numeric::ublas::vector<T> & v1, const boost::numeric::ublas::vector<T> & v2)
80 * \brief subtraction of two vectors
81 * \param v1 : ublas vector
82 * \param v2 : ublas vector
83 * \return ublas vector
84 */
85 template<class T> inline boost::numeric::ublas::vector<T> operator -(const boost::numeric::ublas::vector<T> & v1, const boost::numeric::ublas::vector<T> & v2)
86 {
87 boost::numeric::ublas::vector<T> tmp = v1;
88 return tmp-=v2;
89 }
90
91 /*!
92 * \fn inline boost::numeric::ublas::matrix<T>Trans(boost::numeric::ublas::matrix<T> &m)
93 * \brief transpose a matrix
94 * \param m : ublas matrix
95 * \return ublas matrix
96 */
97 template<class T> inline boost::numeric::ublas::matrix<T>Trans(boost::numeric::ublas::matrix<T> &m)
98 {
99 return trans(m);
100 }
101
102 /*!
103 * \fn inline boost::numeric::ublas::matrix<T> vector2matrix(const boost::numeric::ublas::vector<T> &v)
104 * \brief convert a vector to a matrix
105 * \param v : ublas vector
106 * \return ublas matrix
107 */
108 template <class T> inline boost::numeric::ublas::matrix<T> vector2matrix(const boost::numeric::ublas::vector<T> &v)
109 {
110 boost::numeric::ublas::matrix<T> tmp(v.size(),1);
111 for(size_t i=0;i<v.size();i++) tmp(i,0)=v[i];
112 return tmp;
113 }
114
115
116 /*!
117 * \fn inline double Norm(const boost::numeric::ublas::vector<T> & v)
118 * \brief compute the norm of a vector
119 * \param v : ublas vector
120 * \return norm value
121 */
122 template <class T> inline double Norm(const boost::numeric::ublas::vector<T> & v){
123 double norm =0;
124 for(typename boost::numeric::ublas::vector<T>::const_iterator I=v.begin();I!=v.end();I++) norm+=(*I)*(*I);
125 return std::sqrt(norm);
126 }
127
128
129 /*!
130 * \fn inline boost::numeric::ublas::vector<T> Mult(const boost::numeric::ublas::vector<T> & v1, const boost::numeric::ublas::vector<T> & v2)
131 * \brief term by term multiplication of two vectors
132 * \param v1 : ublas vector
133 * \param v2 : ublas vector
134 * \return ublas vector
135 */
136 template <class T> inline boost::numeric::ublas::vector<T> Mult(const boost::numeric::ublas::vector<T> & v1, const boost::numeric::ublas::vector<T> & v2){
137 if(v1.size()!=v2.size()) throw math_error("Dot(v1,v2) : vectors must have the same size");
138 boost::numeric::ublas::vector<T> v(v1.size());
139 for(size_t i=0;i<v1.size();i++) v[i]=v1[i]*v2[i];
140 return v;
141 }
142
143 /*!
144 * \fn inline double Dot(const boost::numeric::ublas::vector<T> & v1, const boost::numeric::ublas::vector<T> & v2)
145 * \brief dot product
146 * \param v1 : ublas vector
147 * \param v2 : ublas vector
148 * \return dot value
149 */
150 template <class T> inline double Dot(const boost::numeric::ublas::vector<T> & v1, const boost::numeric::ublas::vector<T> & v2){
151 if(v1.size()!=v2.size()) throw math_error("Dot(v1,v2) : vectors must have the same size");
152 double dot=0;
153 for(size_t i=0;i<v1.size();i++) dot+=v1[i]*v2[i];
154 return dot;
155 }
156
157
158 /*!
159 * \fn inline Matrix Inv(const Matrix &m)
160 * \brief matrix inversion using LU decomposition
161 * \param m : ublas matrix
162 * \return ubls matrix
163 */
164 inline Matrix InvLU(const Matrix &m) throw(math_error){
165 using namespace boost::numeric::ublas;
166 typedef permutation_matrix<std::size_t> pmatrix;
167
168 if(m.size1() != m.size2()) throw math_error("Inv(m): matrix must be square");
169
170 // create a working copy of the input
171 Matrix A(m);
172 // create a permutation matrix for the LU-factorization
173 pmatrix pm(A.size1());
174 // perform LU-factorization
175 int res = lu_factorize(A,pm);
176 if( res != 0 ) throw math_error("Inv(m) : singular matrix");
177 // create identity matrix of "inverse"
178 Matrix inverse = identity_matrix<double>(A.size1());
179 // backsubstitute to get the inverse
180 lu_substitute(A, pm, inverse);
181
182 return inverse;
183 }
184
185
186
187
188////////////////////////////////////////////////////////////////////////////////
189///////////////////////// QR DECOMPOSITION ////////////////////////////////////
190///////////////////////////////////////////////////////////////////////////////
191
192 template<class T>
193 bool InvertMatrix (const boost::numeric::ublas::matrix<T>& input, boost::numeric::ublas::matrix<T>& inverse) {
194 using namespace boost::numeric::ublas;
195 typedef permutation_matrix<std::size_t> pmatrix;
196 // create a working copy of the input
197 matrix<T> A(input);
198 // create a permutation matrix for the LU-factorization
199 pmatrix pm(A.size1());
200
201 // perform LU-factorization
202 int res = lu_factorize(A,pm);
203 if( res != 0 ) return false;
204
205 // create identity matrix of "inverse"
206 inverse.assign(boost::numeric::ublas::identity_matrix<T>(A.size1()));
207
208 // backsubstitute to get the inverse
209 lu_substitute(A, pm, inverse);
210
211 return true;
212 }
213
214template<class T>
215 void TransposeMultiply (const boost::numeric::ublas::vector<T>& vector,
216 boost::numeric::ublas::matrix<T>& result,
217 size_t size)
218 {
219 result.resize (size,size);
220 result.clear ();
221 for(unsigned int row=0; row< vector.size(); ++row)
222 {
223 for(unsigned int col=0; col < vector.size(); ++col)
224 result(row,col) = vector(col) * vector(row);
225
226 }
227 }
228
229 template<class T>
230 void HouseholderCornerSubstraction (boost::numeric::ublas::matrix<T>& LeftLarge,
231 const boost::numeric::ublas::matrix<T>& RightSmall)
232 {
233 using namespace boost::numeric::ublas;
234 using namespace std;
235 if(
236 !(
237 (LeftLarge.size1() >= RightSmall.size1())
238 && (LeftLarge.size2() >= RightSmall.size2())
239 )
240 )
241 {
242 cerr << "invalid matrix dimensions" << endl;
243 return;
244 }
245
246 size_t row_offset = LeftLarge.size2() - RightSmall.size2();
247 size_t col_offset = LeftLarge.size1() - RightSmall.size1();
248
249 for(unsigned int row = 0; row < RightSmall.size2(); ++row )
250 for(unsigned int col = 0; col < RightSmall.size1(); ++col )
251 LeftLarge(col_offset+col,row_offset+row) -= RightSmall(col,row);
252 }
253
254 template<class T>
255 void QR (const boost::numeric::ublas::matrix<T>& M,
256 boost::numeric::ublas::matrix<T>& Q,
257 boost::numeric::ublas::matrix<T>& R)
258 {
259 using namespace boost::numeric::ublas;
260 using namespace std;
261
262 if(
263 !(
264 (M.size1() == M.size2())
265 )
266 )
267 {
268 cerr << "invalid matrix dimensions" << endl;
269 return;
270 }
271 size_t size = M.size1();
272
273 // init Matrices
274 matrix<T> H, HTemp;
275 HTemp = identity_matrix<T>(size);
276 Q = identity_matrix<T>(size);
277 R = M;
278
279 // find Householder reflection matrices
280 for(unsigned int col = 0; col < size-1; ++col)
281 {
282 // create X vector
283 boost::numeric::ublas::vector<T> RRowView = boost::numeric::ublas::column(R,col);
284 vector_range< boost::numeric::ublas::vector<T> > X2 (RRowView, range (col, size));
285 boost::numeric::ublas::vector<T> X = X2;
286
287 // X -> U~
288 if(X(0) >= 0)
289 X(0) += norm_2(X);
290 else
291 X(0) += -1*norm_2(X);
292
293 HTemp.resize(X.size(),X.size(),true);
294
295 TransposeMultiply(X, HTemp, X.size());
296
297 // HTemp = the 2UUt part of H
298 HTemp *= ( 2 / inner_prod(X,X) );
299
300 // H = I - 2UUt
301 H = identity_matrix<T>(size);
302 HouseholderCornerSubstraction(H,HTemp);
303
304 // add H to Q and R
305 Q = prod(Q,H);
306 R = prod(H,R);
307 }
308 }
309//////////////////////////////////////////////////////////////////////////////////////////::
310
311
312
313
314
315
316 /*!
317 * \fn inline Matrix InvQR(const Matrix &m)
318 * \brief matrix inversion using QR decomposition
319 * \param m : ublas matrix
320 * \return ubls matrix
321 */
322 inline Matrix InvQR(const Matrix &m) throw(math_error){
323 using namespace boost::numeric::ublas;
324
325 if(m.size1() != m.size2()) throw math_error("Inv(m): matrix must be square");
326 Matrix Q(m), R(m), Rinv(m);
327 QR (m,Q,R);
328 for( int i = 0 ; i < R.size1() ; i++ )
329 for( int j = 0 ; j < R.size2() ; j++ )
330 if( R(i,j) < 1e-10 )
331 R(i,j) = 0;
332 InvertMatrix(R,Rinv);
333 return Rinv*Trans(Q);
334 }
335
336
337 /*!
338 * \fn inline double DetLU(const Matrix & m)
339 * \brief compute matrix determinant using LU decomposition
340 * \param m : ublas matrix
341 * \return ublas matrix
342 */
343 inline double DetLU(const Matrix & m) throw(math_error){
344 using namespace boost::numeric::ublas;
345 typedef permutation_matrix<std::size_t> pmatrix;
346
347
348 if(m.size1() != m.size2()) throw math_error("Determinant(m): matrix must be square");
349
350 // create a working copy of the input
351 Matrix A(m);
352 // create a permutation matrix for the LU-factorization
353 pmatrix pm(m.size1());
354 // perform LU-factorization
355 int res = lu_factorize(A, pm);
356 if( res != 0 ) throw math_error("Determinant(m) : singular matrix");
357 //compute determinant
358 double det = 1.0;
359 for (std::size_t i=0; i < pm.size(); ++i) {
360 if (pm(i) != i)
361 det *= -1.0;
362 det *= A(i,i);
363 }
364 return det;
365 }
366
367
368 // output stream function
369 inline std::ostream& operator << (std::ostream& ostrm, const Matrix & m)
370 {
371 for (size_t i=0; i < m.size1(); i++)
372 {
373 ostrm << '['<<'\t';
374 for (size_t j=0; j < m.size2(); j++)
375 {
376 double x = m(i,j);
377 ostrm << x << '\t';
378 }
379 ostrm << ']'<< std::endl;
380 }
381 return ostrm;
382 }
383
384 // output stream function
385 inline std::ostream& operator << (std::ostream& ostrm, const Vector & v)
386 {
387 for (size_t i=0; i < v.size(); i++)
388 {
389 ostrm << '['<<'\t';
390 double x = v(i);
391 ostrm << x << '\t';
392 ostrm << ']'<< std::endl;
393 }
394 return ostrm;
395 }
396
397};
398};
399#endif
Note: See TracBrowser for help on using the repository browser.