1 | #ifndef __BOOST_UBLAS__
|
---|
2 | #define __BOOST_UBLAS__
|
---|
3 |
|
---|
4 | #include <boost/numeric/ublas/vector.hpp>
|
---|
5 | #include <boost/numeric/ublas/matrix.hpp>
|
---|
6 |
|
---|
7 | #include <boost/numeric/ublas/lu.hpp>
|
---|
8 | #include <boost/numeric/ublas/vector_proxy.hpp>
|
---|
9 | #include <boost/numeric/ublas/triangular.hpp>
|
---|
10 | #include <boost/numeric/ublas/lu.hpp>
|
---|
11 | #include <boost/numeric/ublas/io.hpp>
|
---|
12 |
|
---|
13 | #include <cmath>
|
---|
14 | #include "math_exception.hpp"
|
---|
15 |
|
---|
16 | namespace math {
|
---|
17 |
|
---|
18 | namespace ublas {
|
---|
19 |
|
---|
20 | /*!
|
---|
21 | *\fn typedef boost::numeric::ublas::matrix<double> Matrix
|
---|
22 | * \brief Definition of a matrix using double precision
|
---|
23 | */
|
---|
24 | typedef boost::numeric::ublas::matrix<double> Matrix;
|
---|
25 | /*!
|
---|
26 | *\fn typedef boost::numeric::ublas::vector<double> Vector
|
---|
27 | * \brief Definition of a vector using double precision
|
---|
28 | */
|
---|
29 | typedef boost::numeric::ublas::vector<double> Vector;
|
---|
30 | /*!
|
---|
31 | *\fn typedef boost::numeric::ublas::zero_vector<double> ZeroVector;
|
---|
32 | * \brief Definition of empty vector using double precision
|
---|
33 | */
|
---|
34 | typedef boost::numeric::ublas::zero_vector<double> ZeroVector;
|
---|
35 | /*!
|
---|
36 | *\fn typedef boost::numeric::ublas::zero_matrix<double> ZeroMatrix;
|
---|
37 | * \brief Definition of empty matrix using double precision
|
---|
38 | */
|
---|
39 | typedef boost::numeric::ublas::zero_matrix<double> ZeroMatrix;
|
---|
40 |
|
---|
41 | /*!
|
---|
42 | * \fn inline boost::numeric::ublas::matrix<T> operator *(const boost::numeric::ublas::matrix<T> & m1, const boost::numeric::ublas::matrix<T> & m2)
|
---|
43 | * \brief multiplication of two matrices
|
---|
44 | * \param m1 : ublas matrix
|
---|
45 | * \param m2 : ublas matrix
|
---|
46 | * \return ublas matrix
|
---|
47 | */
|
---|
48 | template<class T> inline boost::numeric::ublas::matrix<T> operator *(const boost::numeric::ublas::matrix<T> & m1, const boost::numeric::ublas::matrix<T> & m2)
|
---|
49 | {
|
---|
50 | return prod(m1,m2);
|
---|
51 | }
|
---|
52 |
|
---|
53 | /*!
|
---|
54 | * \fn inline boost::numeric::ublas::vector<T> operator *(const boost::numeric::ublas::matrix<T> & m, const boost::numeric::ublas::vector<T> & v)
|
---|
55 | * \brief product of a vector by a matrix
|
---|
56 | * \param m : ublas matrix
|
---|
57 | * \param v : ublas vector
|
---|
58 | * \return ublas vector
|
---|
59 | */
|
---|
60 | template<class T> inline boost::numeric::ublas::vector<T> operator *(const boost::numeric::ublas::matrix<T> & m, const boost::numeric::ublas::vector<T> & v)
|
---|
61 | {
|
---|
62 | return prod(m,v);
|
---|
63 | }
|
---|
64 |
|
---|
65 | /*!
|
---|
66 | * \fn inline boost::numeric::ublas::vector<T> operator +(const boost::numeric::ublas::vector<T> & v1, const boost::numeric::ublas::vector<T> & v2)
|
---|
67 | * \brief addition of two vectors
|
---|
68 | * \param v1 : ublas vector
|
---|
69 | * \param v2 : ublas vector
|
---|
70 | * \return ublas vector
|
---|
71 | */
|
---|
72 | template<class T> inline boost::numeric::ublas::vector<T> operator +(const boost::numeric::ublas::vector<T> & v1, const boost::numeric::ublas::vector<T> & v2)
|
---|
73 | {
|
---|
74 | boost::numeric::ublas::vector<T> tmp = v1;
|
---|
75 | return tmp+=v2;
|
---|
76 | }
|
---|
77 |
|
---|
78 | /*!
|
---|
79 | * \fn inline boost::numeric::ublas::vector<T> operator -(const boost::numeric::ublas::vector<T> & v1, const boost::numeric::ublas::vector<T> & v2)
|
---|
80 | * \brief subtraction of two vectors
|
---|
81 | * \param v1 : ublas vector
|
---|
82 | * \param v2 : ublas vector
|
---|
83 | * \return ublas vector
|
---|
84 | */
|
---|
85 | template<class T> inline boost::numeric::ublas::vector<T> operator -(const boost::numeric::ublas::vector<T> & v1, const boost::numeric::ublas::vector<T> & v2)
|
---|
86 | {
|
---|
87 | boost::numeric::ublas::vector<T> tmp = v1;
|
---|
88 | return tmp-=v2;
|
---|
89 | }
|
---|
90 |
|
---|
91 | /*!
|
---|
92 | * \fn inline boost::numeric::ublas::matrix<T>Trans(boost::numeric::ublas::matrix<T> &m)
|
---|
93 | * \brief transpose a matrix
|
---|
94 | * \param m : ublas matrix
|
---|
95 | * \return ublas matrix
|
---|
96 | */
|
---|
97 | template<class T> inline boost::numeric::ublas::matrix<T>Trans(boost::numeric::ublas::matrix<T> &m)
|
---|
98 | {
|
---|
99 | return trans(m);
|
---|
100 | }
|
---|
101 |
|
---|
102 | /*!
|
---|
103 | * \fn inline boost::numeric::ublas::matrix<T> vector2matrix(const boost::numeric::ublas::vector<T> &v)
|
---|
104 | * \brief convert a vector to a matrix
|
---|
105 | * \param v : ublas vector
|
---|
106 | * \return ublas matrix
|
---|
107 | */
|
---|
108 | template <class T> inline boost::numeric::ublas::matrix<T> vector2matrix(const boost::numeric::ublas::vector<T> &v)
|
---|
109 | {
|
---|
110 | boost::numeric::ublas::matrix<T> tmp(v.size(),1);
|
---|
111 | for(size_t i=0;i<v.size();i++) tmp(i,0)=v[i];
|
---|
112 | return tmp;
|
---|
113 | }
|
---|
114 |
|
---|
115 |
|
---|
116 | /*!
|
---|
117 | * \fn inline double Norm(const boost::numeric::ublas::vector<T> & v)
|
---|
118 | * \brief compute the norm of a vector
|
---|
119 | * \param v : ublas vector
|
---|
120 | * \return norm value
|
---|
121 | */
|
---|
122 | template <class T> inline double Norm(const boost::numeric::ublas::vector<T> & v){
|
---|
123 | double norm =0;
|
---|
124 | for(typename boost::numeric::ublas::vector<T>::const_iterator I=v.begin();I!=v.end();I++) norm+=(*I)*(*I);
|
---|
125 | return std::sqrt(norm);
|
---|
126 | }
|
---|
127 |
|
---|
128 |
|
---|
129 | /*!
|
---|
130 | * \fn inline boost::numeric::ublas::vector<T> Mult(const boost::numeric::ublas::vector<T> & v1, const boost::numeric::ublas::vector<T> & v2)
|
---|
131 | * \brief term by term multiplication of two vectors
|
---|
132 | * \param v1 : ublas vector
|
---|
133 | * \param v2 : ublas vector
|
---|
134 | * \return ublas vector
|
---|
135 | */
|
---|
136 | template <class T> inline boost::numeric::ublas::vector<T> Mult(const boost::numeric::ublas::vector<T> & v1, const boost::numeric::ublas::vector<T> & v2){
|
---|
137 | if(v1.size()!=v2.size()) throw math_error("Dot(v1,v2) : vectors must have the same size");
|
---|
138 | boost::numeric::ublas::vector<T> v(v1.size());
|
---|
139 | for(size_t i=0;i<v1.size();i++) v[i]=v1[i]*v2[i];
|
---|
140 | return v;
|
---|
141 | }
|
---|
142 |
|
---|
143 | /*!
|
---|
144 | * \fn inline double Dot(const boost::numeric::ublas::vector<T> & v1, const boost::numeric::ublas::vector<T> & v2)
|
---|
145 | * \brief dot product
|
---|
146 | * \param v1 : ublas vector
|
---|
147 | * \param v2 : ublas vector
|
---|
148 | * \return dot value
|
---|
149 | */
|
---|
150 | template <class T> inline double Dot(const boost::numeric::ublas::vector<T> & v1, const boost::numeric::ublas::vector<T> & v2){
|
---|
151 | if(v1.size()!=v2.size()) throw math_error("Dot(v1,v2) : vectors must have the same size");
|
---|
152 | double dot=0;
|
---|
153 | for(size_t i=0;i<v1.size();i++) dot+=v1[i]*v2[i];
|
---|
154 | return dot;
|
---|
155 | }
|
---|
156 |
|
---|
157 |
|
---|
158 | /*!
|
---|
159 | * \fn inline Matrix Inv(const Matrix &m)
|
---|
160 | * \brief matrix inversion using LU decomposition
|
---|
161 | * \param m : ublas matrix
|
---|
162 | * \return ubls matrix
|
---|
163 | */
|
---|
164 | inline Matrix InvLU(const Matrix &m) throw(math_error){
|
---|
165 | using namespace boost::numeric::ublas;
|
---|
166 | typedef permutation_matrix<std::size_t> pmatrix;
|
---|
167 |
|
---|
168 | if(m.size1() != m.size2()) throw math_error("Inv(m): matrix must be square");
|
---|
169 |
|
---|
170 | // create a working copy of the input
|
---|
171 | Matrix A(m);
|
---|
172 | // create a permutation matrix for the LU-factorization
|
---|
173 | pmatrix pm(A.size1());
|
---|
174 | // perform LU-factorization
|
---|
175 | int res = lu_factorize(A,pm);
|
---|
176 | if( res != 0 ) throw math_error("Inv(m) : singular matrix");
|
---|
177 | // create identity matrix of "inverse"
|
---|
178 | Matrix inverse = identity_matrix<double>(A.size1());
|
---|
179 | // backsubstitute to get the inverse
|
---|
180 | lu_substitute(A, pm, inverse);
|
---|
181 |
|
---|
182 | return inverse;
|
---|
183 | }
|
---|
184 |
|
---|
185 |
|
---|
186 |
|
---|
187 |
|
---|
188 | ////////////////////////////////////////////////////////////////////////////////
|
---|
189 | ///////////////////////// QR DECOMPOSITION ////////////////////////////////////
|
---|
190 | ///////////////////////////////////////////////////////////////////////////////
|
---|
191 |
|
---|
192 | template<class T>
|
---|
193 | bool InvertMatrix (const boost::numeric::ublas::matrix<T>& input, boost::numeric::ublas::matrix<T>& inverse) {
|
---|
194 | using namespace boost::numeric::ublas;
|
---|
195 | typedef permutation_matrix<std::size_t> pmatrix;
|
---|
196 | // create a working copy of the input
|
---|
197 | matrix<T> A(input);
|
---|
198 | // create a permutation matrix for the LU-factorization
|
---|
199 | pmatrix pm(A.size1());
|
---|
200 |
|
---|
201 | // perform LU-factorization
|
---|
202 | int res = lu_factorize(A,pm);
|
---|
203 | if( res != 0 ) return false;
|
---|
204 |
|
---|
205 | // create identity matrix of "inverse"
|
---|
206 | inverse.assign(boost::numeric::ublas::identity_matrix<T>(A.size1()));
|
---|
207 |
|
---|
208 | // backsubstitute to get the inverse
|
---|
209 | lu_substitute(A, pm, inverse);
|
---|
210 |
|
---|
211 | return true;
|
---|
212 | }
|
---|
213 |
|
---|
214 | template<class T>
|
---|
215 | void TransposeMultiply (const boost::numeric::ublas::vector<T>& vector,
|
---|
216 | boost::numeric::ublas::matrix<T>& result,
|
---|
217 | size_t size)
|
---|
218 | {
|
---|
219 | result.resize (size,size);
|
---|
220 | result.clear ();
|
---|
221 | for(unsigned int row=0; row< vector.size(); ++row)
|
---|
222 | {
|
---|
223 | for(unsigned int col=0; col < vector.size(); ++col)
|
---|
224 | result(row,col) = vector(col) * vector(row);
|
---|
225 |
|
---|
226 | }
|
---|
227 | }
|
---|
228 |
|
---|
229 | template<class T>
|
---|
230 | void HouseholderCornerSubstraction (boost::numeric::ublas::matrix<T>& LeftLarge,
|
---|
231 | const boost::numeric::ublas::matrix<T>& RightSmall)
|
---|
232 | {
|
---|
233 | using namespace boost::numeric::ublas;
|
---|
234 | using namespace std;
|
---|
235 | if(
|
---|
236 | !(
|
---|
237 | (LeftLarge.size1() >= RightSmall.size1())
|
---|
238 | && (LeftLarge.size2() >= RightSmall.size2())
|
---|
239 | )
|
---|
240 | )
|
---|
241 | {
|
---|
242 | cerr << "invalid matrix dimensions" << endl;
|
---|
243 | return;
|
---|
244 | }
|
---|
245 |
|
---|
246 | size_t row_offset = LeftLarge.size2() - RightSmall.size2();
|
---|
247 | size_t col_offset = LeftLarge.size1() - RightSmall.size1();
|
---|
248 |
|
---|
249 | for(unsigned int row = 0; row < RightSmall.size2(); ++row )
|
---|
250 | for(unsigned int col = 0; col < RightSmall.size1(); ++col )
|
---|
251 | LeftLarge(col_offset+col,row_offset+row) -= RightSmall(col,row);
|
---|
252 | }
|
---|
253 |
|
---|
254 | template<class T>
|
---|
255 | void QR (const boost::numeric::ublas::matrix<T>& M,
|
---|
256 | boost::numeric::ublas::matrix<T>& Q,
|
---|
257 | boost::numeric::ublas::matrix<T>& R)
|
---|
258 | {
|
---|
259 | using namespace boost::numeric::ublas;
|
---|
260 | using namespace std;
|
---|
261 |
|
---|
262 | if(
|
---|
263 | !(
|
---|
264 | (M.size1() == M.size2())
|
---|
265 | )
|
---|
266 | )
|
---|
267 | {
|
---|
268 | cerr << "invalid matrix dimensions" << endl;
|
---|
269 | return;
|
---|
270 | }
|
---|
271 | size_t size = M.size1();
|
---|
272 |
|
---|
273 | // init Matrices
|
---|
274 | matrix<T> H, HTemp;
|
---|
275 | HTemp = identity_matrix<T>(size);
|
---|
276 | Q = identity_matrix<T>(size);
|
---|
277 | R = M;
|
---|
278 |
|
---|
279 | // find Householder reflection matrices
|
---|
280 | for(unsigned int col = 0; col < size-1; ++col)
|
---|
281 | {
|
---|
282 | // create X vector
|
---|
283 | boost::numeric::ublas::vector<T> RRowView = boost::numeric::ublas::column(R,col);
|
---|
284 | vector_range< boost::numeric::ublas::vector<T> > X2 (RRowView, range (col, size));
|
---|
285 | boost::numeric::ublas::vector<T> X = X2;
|
---|
286 |
|
---|
287 | // X -> U~
|
---|
288 | if(X(0) >= 0)
|
---|
289 | X(0) += norm_2(X);
|
---|
290 | else
|
---|
291 | X(0) += -1*norm_2(X);
|
---|
292 |
|
---|
293 | HTemp.resize(X.size(),X.size(),true);
|
---|
294 |
|
---|
295 | TransposeMultiply(X, HTemp, X.size());
|
---|
296 |
|
---|
297 | // HTemp = the 2UUt part of H
|
---|
298 | HTemp *= ( 2 / inner_prod(X,X) );
|
---|
299 |
|
---|
300 | // H = I - 2UUt
|
---|
301 | H = identity_matrix<T>(size);
|
---|
302 | HouseholderCornerSubstraction(H,HTemp);
|
---|
303 |
|
---|
304 | // add H to Q and R
|
---|
305 | Q = prod(Q,H);
|
---|
306 | R = prod(H,R);
|
---|
307 | }
|
---|
308 | }
|
---|
309 | //////////////////////////////////////////////////////////////////////////////////////////::
|
---|
310 |
|
---|
311 |
|
---|
312 |
|
---|
313 |
|
---|
314 |
|
---|
315 |
|
---|
316 | /*!
|
---|
317 | * \fn inline Matrix InvQR(const Matrix &m)
|
---|
318 | * \brief matrix inversion using QR decomposition
|
---|
319 | * \param m : ublas matrix
|
---|
320 | * \return ubls matrix
|
---|
321 | */
|
---|
322 | inline Matrix InvQR(const Matrix &m) throw(math_error){
|
---|
323 | using namespace boost::numeric::ublas;
|
---|
324 |
|
---|
325 | if(m.size1() != m.size2()) throw math_error("Inv(m): matrix must be square");
|
---|
326 | Matrix Q(m), R(m), Rinv(m);
|
---|
327 | QR (m,Q,R);
|
---|
328 | for( int i = 0 ; i < R.size1() ; i++ )
|
---|
329 | for( int j = 0 ; j < R.size2() ; j++ )
|
---|
330 | if( R(i,j) < 1e-10 )
|
---|
331 | R(i,j) = 0;
|
---|
332 | InvertMatrix(R,Rinv);
|
---|
333 | return Rinv*Trans(Q);
|
---|
334 | }
|
---|
335 |
|
---|
336 |
|
---|
337 | /*!
|
---|
338 | * \fn inline double DetLU(const Matrix & m)
|
---|
339 | * \brief compute matrix determinant using LU decomposition
|
---|
340 | * \param m : ublas matrix
|
---|
341 | * \return ublas matrix
|
---|
342 | */
|
---|
343 | inline double DetLU(const Matrix & m) throw(math_error){
|
---|
344 | using namespace boost::numeric::ublas;
|
---|
345 | typedef permutation_matrix<std::size_t> pmatrix;
|
---|
346 |
|
---|
347 |
|
---|
348 | if(m.size1() != m.size2()) throw math_error("Determinant(m): matrix must be square");
|
---|
349 |
|
---|
350 | // create a working copy of the input
|
---|
351 | Matrix A(m);
|
---|
352 | // create a permutation matrix for the LU-factorization
|
---|
353 | pmatrix pm(m.size1());
|
---|
354 | // perform LU-factorization
|
---|
355 | int res = lu_factorize(A, pm);
|
---|
356 | if( res != 0 ) throw math_error("Determinant(m) : singular matrix");
|
---|
357 | //compute determinant
|
---|
358 | double det = 1.0;
|
---|
359 | for (std::size_t i=0; i < pm.size(); ++i) {
|
---|
360 | if (pm(i) != i)
|
---|
361 | det *= -1.0;
|
---|
362 | det *= A(i,i);
|
---|
363 | }
|
---|
364 | return det;
|
---|
365 | }
|
---|
366 |
|
---|
367 |
|
---|
368 | // output stream function
|
---|
369 | inline std::ostream& operator << (std::ostream& ostrm, const Matrix & m)
|
---|
370 | {
|
---|
371 | for (size_t i=0; i < m.size1(); i++)
|
---|
372 | {
|
---|
373 | ostrm << '['<<'\t';
|
---|
374 | for (size_t j=0; j < m.size2(); j++)
|
---|
375 | {
|
---|
376 | double x = m(i,j);
|
---|
377 | ostrm << x << '\t';
|
---|
378 | }
|
---|
379 | ostrm << ']'<< std::endl;
|
---|
380 | }
|
---|
381 | return ostrm;
|
---|
382 | }
|
---|
383 |
|
---|
384 | // output stream function
|
---|
385 | inline std::ostream& operator << (std::ostream& ostrm, const Vector & v)
|
---|
386 | {
|
---|
387 | for (size_t i=0; i < v.size(); i++)
|
---|
388 | {
|
---|
389 | ostrm << '['<<'\t';
|
---|
390 | double x = v(i);
|
---|
391 | ostrm << x << '\t';
|
---|
392 | ostrm << ']'<< std::endl;
|
---|
393 | }
|
---|
394 | return ostrm;
|
---|
395 | }
|
---|
396 |
|
---|
397 | };
|
---|
398 | };
|
---|
399 | #endif
|
---|