source: pacpusframework/trunk/src/PacpusTools/src/geodesie.cpp

Last change on this file was 213, checked in by Marek Kurdej, 11 years ago

Update: Geodesie.

  • Property svn:executable set to *
File size: 13.2 KB
Line 
1// %pacpus:license{
2// This file is part of the PACPUS framework distributed under the
3// CECILL-C License, Version 1.0.
4/// @author Marek Kurdej <firstname.surname@utc.fr>
5/// @author Jean Laneurit <firstname.surname@utc.fr>
6/// @date April, 2010
7// %pacpus:license}
8
9#include <Pacpus/PacpusTools/geodesie.h>
10
11#include <fstream>
12#include <QMatrix4x4>
13#include <QVector3D>
14
15using ::boost::math::constants::pi;
16using ::boost::math::constants::half_pi;
17using ::std::abs;
18using ::std::atan;
19using ::std::exp;
20using ::std::ifstream;
21using ::std::ostream;
22using ::std::log;
23using ::std::sin;
24using ::std::string;
25
26#ifdef _MSC_VER
27#pragma warning(disable : 4244)
28#endif //_MSC_VER
29
30namespace Geodesy
31{
32
33////////////////////////////////////////////////////////////////////////////////
34Matrice::Matrice(const Matrice& A)
35{
36 c0_l0 = A.c0_l0;
37 c1_l0 = A.c1_l0;
38 c2_l0 = A.c2_l0;
39 c0_l1 = A.c0_l1;
40 c1_l1 = A.c1_l1;
41 c2_l1 = A.c2_l1;
42 c0_l2 = A.c0_l2;
43 c1_l2 = A.c1_l2;
44 c2_l2 = A.c2_l2;
45}
46
47////////////////////////////////////////////////////////////////////////////////
48Matrice::Matrice()
49{
50 c0_l0 = 0.0;
51 c1_l0 = 0.0;
52 c2_l0 = 0.0;
53 c0_l1 = 0.0;
54 c1_l1 = 0.0;
55 c2_l1 = 0.0;
56 c0_l2 = 0.0;
57 c1_l2 = 0.0;
58 c2_l2 = 0.0;
59}
60
61////////////////////////////////////////////////////////////////////////////////
62void Matrice::Apply(double v0, double v1, double v2, double& Mv0, double& Mv1, double& Mv2)
63{
64 Mv0 = c0_l0 * v0 + c1_l0 * v1 + c2_l0 * v2;
65 Mv1 = c0_l1 * v0 + c1_l1 * v1 + c2_l1 * v2;
66 Mv2 = c0_l2 * v0 + c1_l2 * v1 + c2_l2 * v2;
67}
68
69Matrice& Matrice::operator*=(Matrice const& other)
70{
71 // TODO: optimize
72 *this = ProdMat(*this, other);
73 return *this;
74}
75
76////////////////////////////////////////////////////////////////////////////////
77Matrice ProdMat(Matrice const& A, Matrice const& B)
78{
79 Matrice out;
80
81 out.c0_l0 = A.c0_l0 * B.c0_l0 + A.c1_l0 * B.c0_l1 + A.c2_l0 * B.c0_l2;
82 out.c1_l0 = A.c0_l0 * B.c1_l0 + A.c1_l0 * B.c1_l1 + A.c2_l0 * B.c1_l2;
83 out.c2_l0 = A.c0_l0 * B.c2_l0 + A.c1_l0 * B.c2_l1 + A.c2_l0 * B.c2_l2;
84
85 out.c0_l1 = A.c0_l1 * B.c0_l0 + A.c1_l1 * B.c0_l1 + A.c2_l1 * B.c0_l2;
86 out.c1_l1 = A.c0_l1 * B.c1_l0 + A.c1_l1 * B.c1_l1 + A.c2_l1 * B.c1_l2;
87 out.c2_l1 = A.c0_l1 * B.c2_l0 + A.c1_l1 * B.c2_l1 + A.c2_l1 * B.c2_l2;
88
89 out.c0_l2 = A.c0_l2 * B.c0_l0 + A.c1_l2 * B.c0_l1 + A.c2_l2 * B.c0_l2;
90 out.c1_l2 = A.c0_l2 * B.c1_l0 + A.c1_l2 * B.c1_l1 + A.c2_l2 * B.c1_l2;
91 out.c2_l2 = A.c0_l2 * B.c2_l0 + A.c1_l2 * B.c2_l1 + A.c2_l2 * B.c2_l2;
92 return out;
93}
94
95////////////////////////////////////////////////////////////////////////////////
96Matrice TransMat(Matrice const& A)
97{
98 Matrice out;
99 out.c0_l0 = A.c0_l0;
100 out.c1_l0 = A.c0_l1;
101 out.c2_l0 = A.c0_l2;
102 out.c0_l1 = A.c1_l0;
103 out.c1_l1 = A.c1_l1;
104 out.c2_l1 = A.c1_l2;
105 out.c0_l2 = A.c2_l0;
106 out.c1_l2 = A.c2_l1;
107 out.c2_l2 = A.c2_l2;
108 return out;
109}
110
111////////////////////////////////////////////////////////////////////////////////
112ostream& operator<<(ostream& os, Matrice const& A)
113{
114 os << A.c0_l0 << "\t" << A.c1_l0 << "\t" << A.c2_l0 << "\n";
115 os << A.c0_l1 << "\t" << A.c1_l1 << "\t" << A.c2_l1 << "\n";
116 os << A.c0_l2 << "\t" << A.c1_l2 << "\t" << A.c2_l2 << "\n";
117 return os;
118}
119
120void Write(Matrice const& A, ostream& out)
121{
122 out << A;
123}
124
125////////////////////////////////////////////////////////////////////////////////
126Raf98::Raf98()
127{
128}
129
130////////////////////////////////////////////////////////////////////////////////
131Raf98::~Raf98()
132{
133 m_dvalues.clear();
134}
135
136////////////////////////////////////////////////////////////////////////////////
137bool Raf98::Interpol(double longitude, double latitude, double* Hwgs84) const
138{
139 *Hwgs84 = 0.0;
140 if (m_dvalues.size() == 0) {
141 return false;
142 }
143 const double longitude_min = -5.5;
144 const double longitude_max = 8.5;
145 if (longitude < longitude_min) {
146 return false;
147 }
148 if (longitude > longitude_max) {
149 return false;
150 }
151 const double latitude_min = 42;
152 const double latitude_max = 51.5;
153 if (latitude < latitude_min) {
154 return false;
155 }
156 if (latitude > latitude_max) {
157 return false;
158 }
159 //conversion en position
160 double longPix = (longitude - longitude_min) * 30.;
161 double latPix = (latitude_max - latitude) * 40.;
162
163 double RestCol, RestLig;
164 double ColIni, LigIni;
165 RestCol = modf(longPix, &ColIni);
166 RestLig = modf(latPix, &LigIni);
167
168 double Zbd = (1.0 - RestCol) * (1.0 - RestLig) * LitGrille(ColIni, LigIni);
169 Zbd += RestCol * (1.0 - RestLig) * LitGrille(ColIni + 1, LigIni);
170 Zbd += (1.0 - RestCol) * RestLig * LitGrille(ColIni, LigIni + 1);
171 Zbd += RestCol * RestLig * LitGrille(ColIni + 1, LigIni + 1);
172 *Hwgs84 = Zbd;
173
174 return true;
175}
176
177////////////////////////////////////////////////////////////////////////////////
178double Raf98::LitGrille(unsigned int c, unsigned int l) const
179{
180 const unsigned int w = 421;
181 // const unsigned int h=381;
182 return m_dvalues.at(c + l * w);
183}
184
185////////////////////////////////////////////////////////////////////////////////
186bool Raf98::Load(const string& s)
187{
188 ifstream in(s.c_str());
189 unsigned int w = 421;
190 unsigned int h = 381;
191
192 m_dvalues.reserve(w * h);
193
194 char entete[1024]; //sur 3 lignes
195 in.getline(entete, 1023);
196 in.getline(entete, 1023);
197 in.getline(entete, 1023);
198
199 char bidon[1024];
200 double val;
201 for (unsigned int i = 0; i < h; ++i) {
202 for (unsigned int j = 0; j < 52; ++j) {
203 for (unsigned int k = 0; k < 8; ++k) {
204 in >> val;
205 m_dvalues.push_back(val);
206 }
207 in.getline(bidon, 1023);
208 }
209 for (unsigned int k = 0; k < 5; ++k) {
210 in >> val;
211 m_dvalues.push_back(val);
212 }
213 in.getline(bidon, 1023);
214 if (!in.good()) {
215 m_dvalues.clear();
216 return false;
217 }
218 }
219 return in.good();
220}
221
222} // namespace Geodesy
223
224////////////////////////////////////////////////////////////////////////////////
225////////////////////////////////////////////////////////////////////////////////
226
227////////////////////////////////////////////////////////////////////////////////
228//ALGO0001
229double Geodesy::LatitueIsometrique(double latitude, double e)
230{
231 double li = log(tan(pi<double>() / 4. + latitude / 2.)) + e * log((1 - e * sin(latitude)) / (1 + e * sin(latitude))) / 2;
232 return li;
233}
234
235////////////////////////////////////////////////////////////////////////////////
236//ALGO0002
237double Geodesy::LatitueIsometrique2Lat(double latitude_iso, double e, double epsilon)
238{
239 double latitude_i = 2 * atan(exp(latitude_iso)) - half_pi<double>();
240 double latitude_ip1 = latitude_i + epsilon * 2;
241 while (abs(latitude_i - latitude_ip1) > epsilon) {
242 latitude_i = latitude_ip1;
243 latitude_ip1 = 2 * atan(
244 exp(e * 0.5 * log(
245 (1 + e * sin(latitude_i)) / (1 - e * sin(latitude_i))))
246 * exp(latitude_iso)) - half_pi<double>();
247 }
248 return latitude_ip1;
249}
250
251////////////////////////////////////////////////////////////////////////////////
252void Geodesy::Geo2ProjLambert(
253 double lambda, double phi,
254 double n, double c, double e,
255 double lambdac, double xs, double ys,
256 double& X, double& Y)
257{
258 double lat_iso = LatitueIsometrique(phi, e);
259 X = xs + c * exp(-n * lat_iso) * sin(n * (lambda - lambdac));
260 Y = ys - c * exp(-n * lat_iso) * cos(n * (lambda - lambdac));
261}
262
263////////////////////////////////////////////////////////////////////////////////
264//ALGO0004
265void Geodesy::Proj2GeoLambert(
266 double X, double Y,
267 double n, double c, double e,
268 double lambdac, double xs, double ys,
269 double epsilon,
270 double& lambda, double& phi)
271{
272 double X_xs = X - xs;
273 double ys_Y = ys - Y;
274 double R = sqrt(X_xs * X_xs + ys_Y * ys_Y);
275 double gamma = atan(X_xs / ys_Y);
276 lambda = lambdac + gamma / n;
277 double lat_iso = -1 / n * log(fabs(R / c));
278 phi = LatitueIsometrique2Lat(lat_iso, e, epsilon);
279}
280
281////////////////////////////////////////////////////////////////////////////////
282double Geodesy::ConvMerApp(double longitude)
283{
284 double phi0_Lambert93 = Deg2Rad(46.5);
285 double lambda0_Lambert93 = Deg2Rad(3.0);
286 double conv = -sin(phi0_Lambert93) * (longitude - lambda0_Lambert93);
287 return conv;
288}
289
290////////////////////////////////////////////////////////////////////
291void Geodesy::Geographique_2_Lambert93(const Raf98& raf98, double lambda, double phi, double he, Matrice in, double& E, double& N, double& h, Matrice& out)
292{
293 Matrice passage;
294 double conv = Geodesy::ConvMerApp(lambda);
295 double c_ = cos(conv);
296 double s_ = sin(conv);
297
298 passage.c0_l0 = c_;
299 passage.c0_l1 = s_;
300 passage.c0_l2 = 0.0;
301
302 passage.c1_l0 = -s_;
303 passage.c1_l1 = c_;
304 passage.c1_l2 = 0.0;
305
306 passage.c2_l0 = 0.0;
307 passage.c2_l1 = 0.0;
308 passage.c2_l2 = 1.0;
309
310 out = passage * in;
311 double diff_h;
312 raf98.Interpol(Rad2Deg(lambda), Rad2Deg(phi), &diff_h);
313 h = he - diff_h;
314
315 Geodesy::Geo2ProjLambert(
316 lambda, phi,
317 n_Lambert93, c_Lambert93, e_Lambert93,
318 lambda0_Lambert93, xs_Lambert93, ys_Lambert93,
319 E, N);
320}
321
322////////////////////////////////////////////////////////////////////////
323void Geodesy::Geographique_2_Lambert93(const Raf98& raf98, double lambda, double phi, double he, double& E, double& N, double& h)
324{
325 Geodesy::Geo2ProjLambert(
326 lambda, phi,
327 n_Lambert93, c_Lambert93, e_Lambert93,
328 lambda0_Lambert93, xs_Lambert93, ys_Lambert93,
329 E, N);
330
331 double diff_h;
332 raf98.Interpol(Rad2Deg(lambda), Rad2Deg(phi), &diff_h);
333 h = he - diff_h;
334}
335
336/// Converts Lambert93 coordinates (East, North, Height) into geographical coordinates in radians (Longitude = Rad2Deg(lambda), Latitude = Rad2Deg(phi), Height)
337void Geodesy::Lambert93_2_Geographique(const Raf98& raf98, double E, double N, double h, double& lambda, double& phi, double& he)
338{
339 Geodesy::Proj2GeoLambert(
340 E, N,
341 n_Lambert93, c_Lambert93, e_Lambert93,
342 lambda0_Lambert93, xs_Lambert93, ys_Lambert93,
343 0.0000000000000001,
344 lambda, phi);
345
346 double diff_h;
347 raf98.Interpol(Rad2Deg(lambda), Rad2Deg(phi), &diff_h);
348 he = h + diff_h;
349}
350
351////////////////////////////////////////////////////////////////////////
352void Geodesy::Lambert93_2_Geographique(const Raf98& raf98, double E, double N, double h, Matrice in, double& lambda, double& phi, double& he, Matrice& out)
353{
354 Geodesy::Proj2GeoLambert(
355 E, N,
356 n_Lambert93, c_Lambert93, e_Lambert93,
357 lambda0_Lambert93, xs_Lambert93, ys_Lambert93,
358 0.0000000000000001,
359 lambda, phi);
360
361 Matrice passage;
362 double conv = Geodesy::ConvMerApp(lambda);
363 double c_ = cos(conv);
364 double s_ = sin(conv);
365
366 passage.c0_l0 = c_;
367 passage.c0_l1 = -s_;
368 passage.c0_l2 = 0.0;
369
370 passage.c1_l0 = s_;
371 passage.c1_l1 = c_;
372 passage.c1_l2 = 0.0;
373
374 passage.c2_l0 = 0.0;
375 passage.c2_l1 = 0.0;
376 passage.c2_l2 = 1.0;
377
378 out = passage * in;
379
380 double diff_h;
381 raf98.Interpol(Rad2Deg(lambda), Rad2Deg(phi), &diff_h);
382 he = h + diff_h;
383}
384
385////////////////////////////////////////////////////////////////////////
386void Geodesy::Geographique_2_ECEF(double longitude, double latitude, double he, double& x, double& y, double& z)
387{
388 const double n = GRS_a / sqrt(1.0 - pow(GRS_e, 2) * pow(sin(latitude), 2));
389 x = (n + he) * cos(latitude) * cos(longitude);
390 y = (n + he) * cos(latitude) * sin(longitude);
391 z = (n * (1.0 - pow(GRS_e, 2)) + he) * sin(latitude);
392}
393
394////////////////////////////////////////////////////////////////////////
395void Geodesy::ECEF_2_ENU(double x, double y, double z, double& e, double& n, double& u, double lon0, double lat0, double he0)
396{
397 double slat = sin(lat0);
398 double clat = cos(lat0);
399 double slon = sin(lon0);
400 double clon = cos(lon0);
401
402 Matrice C;
403 C.c0_l0 = -slon;
404 C.c1_l0 = clon;
405
406 C.c0_l1 = -clon * slat;
407 C.c1_l1 = -slon * slat;
408 C.c2_l1 = clat;
409
410 C.c0_l2 = clon * clat;
411 C.c1_l2 = slon * clat;
412 C.c2_l2 = slat;
413
414 double x0, y0, z0;
415 Geographique_2_ECEF(lon0, lat0, he0, x0, y0, z0);
416
417 x -= x0;
418 y -= y0;
419 z -= z0;
420
421 C.Apply(x, y, z, e, n, u);
422}
423
424QMatrix4x4 Geodesy::yprenuToMatrix(QVector3D angle, QVector3D position)
425{
426 float c1 = cos(angle.x());
427 float c2 = cos(angle.y());
428 float c3 = cos(angle.z());
429
430 float s1 = sin(angle.x());
431 float s2 = sin(angle.y());
432 float s3 = sin(angle.z());
433
434 // Source : https://en.wikipedia.org/wiki/Euler_angles
435 return QMatrix4x4(c1 * c2, c1 * s2 * s3 - c3 * s1, s1 * s3 + c1 * c3 * s2, position.x(),
436 c2 * s1, c1 * c3 + s1 * s2 * s3, c3 * s1 * s2 - c1 * s3, position.y(),
437 -s2, c2 * s3, c2 * c3, position.z(),
438 0, 0, 0, 1);
439}
Note: See TracBrowser for help on using the repository browser.