1 | /*********************************************************************
|
---|
2 | // created: 2013/06/19 - 18:40
|
---|
3 | // filename: ObstacleDetectionComponent.cpp
|
---|
4 | //
|
---|
5 | // author: Danilo Alves de Lima and Students of SY27
|
---|
6 | // Copyright Heudiasyc UMR UTC/CNRS 6599
|
---|
7 | //
|
---|
8 | // version: $Id: $
|
---|
9 | //
|
---|
10 | // purpose: Obstacle detection from stereo image data
|
---|
11 | //
|
---|
12 | //
|
---|
13 | *********************************************************************/
|
---|
14 | //#include "GeneralDefinitions.h"
|
---|
15 |
|
---|
16 | #include "ObstacleDetectionComponent.h"
|
---|
17 |
|
---|
18 | #include <iostream>
|
---|
19 | #include <string>
|
---|
20 | #include "opencv2/calib3d/calib3d.hpp"
|
---|
21 | #include "opencv2/core/core.hpp"
|
---|
22 |
|
---|
23 | #include "Pacpus/kernel/ComponentFactory.h"
|
---|
24 | #include "Pacpus/kernel/DbiteException.h"
|
---|
25 | #include "Pacpus/kernel/DbiteFileTypes.h"
|
---|
26 | #include "Pacpus/kernel/Log.h"
|
---|
27 |
|
---|
28 | using namespace std;
|
---|
29 | using namespace pacpus;
|
---|
30 |
|
---|
31 | DECLARE_STATIC_LOGGER("pacpus.base.ObstacleDetectionComponent");
|
---|
32 |
|
---|
33 | // Construct the factory
|
---|
34 | static ComponentFactory<ObstacleDetectionComponent> sFactory("ObstacleDetectionComponent");
|
---|
35 |
|
---|
36 | const int kMaxFilepathLength = 512; // TODO: should be same for all images
|
---|
37 |
|
---|
38 | static const string ObstacleDetectionMemoryName_ref = "DisparityMap-ref";
|
---|
39 | static const string ObstacleDetectionMemoryName_dispin = "DisparityMap-disp";
|
---|
40 |
|
---|
41 | static const string ObstacleDetectionMemoryName_mask1 = "ObstacleDetection-mask1";
|
---|
42 | static const string ObstacleDetectionMemoryName_mask2 = "ObstacleDetection-mask2";
|
---|
43 | static const string ObstacleDetectionMemoryName_dispout = "ObstacleDetection-disp";
|
---|
44 |
|
---|
45 | //////////////////////////////////////////////////////////////////////////
|
---|
46 | /* ComparePoints1
|
---|
47 | Description:
|
---|
48 | Compare if the point 1 if less than 2 by the criteria of the higher y e higher x
|
---|
49 | Parameters:
|
---|
50 | pt1 = point 1
|
---|
51 | pt2 = point 2
|
---|
52 | */
|
---|
53 | bool ComparePoints1( cv::Point pt1, cv::Point pt2)
|
---|
54 | {
|
---|
55 | /*
|
---|
56 | · Strict: pred(X, X) is always false.
|
---|
57 |
|
---|
58 | · Weak: If !pred(X, Y) && !pred(Y, X), X==Y.
|
---|
59 |
|
---|
60 | · Ordering: If pred(X, Y) && pred(Y, Z), then pred(X, Z).
|
---|
61 | */
|
---|
62 | if(pt1.y > pt2.y)
|
---|
63 | {
|
---|
64 | return true;
|
---|
65 | }
|
---|
66 | else if((pt1.y == pt2.y)&&(pt1.x >= pt2.x))
|
---|
67 | {
|
---|
68 | return true;
|
---|
69 | }
|
---|
70 | else
|
---|
71 | {
|
---|
72 | return false;
|
---|
73 | }
|
---|
74 | }
|
---|
75 |
|
---|
76 | /// Constructor.
|
---|
77 | ObstacleDetectionComponent::ObstacleDetectionComponent(QString name)
|
---|
78 | : ComponentBase(name)
|
---|
79 | {
|
---|
80 | LOG_TRACE(Q_FUNC_INFO);
|
---|
81 |
|
---|
82 | setRecording(0);
|
---|
83 |
|
---|
84 | ANG_VARIATION = 20.0;
|
---|
85 | ANG_VARIATION2 = 7.0;
|
---|
86 |
|
---|
87 | this->cam_width = 1280; // Image width
|
---|
88 | this->cam_height = 960; // Image height
|
---|
89 | this->cam_channels = 3;
|
---|
90 | this->showdebug = false; // Show frame acquired
|
---|
91 |
|
---|
92 | // Size of the image data sizeof(char)*width*height*channels
|
---|
93 | this->mMaxImageInputSize1 = sizeof(char) * this->cam_width * this->cam_height * this->cam_channels;
|
---|
94 |
|
---|
95 | // Input data
|
---|
96 | this->shmem_ref = 0; // Shared memory control access to the image data
|
---|
97 | this->shmem_dispin = 0; // Shared memory control access to the image data
|
---|
98 |
|
---|
99 | // Output data
|
---|
100 | this->shmem_mask1 = 0; // Shared memory control access to the image data (free space mask)
|
---|
101 | this->shmem_mask2 = 0; // Shared memory control access to the image data (obstacles mask)
|
---|
102 | this->shmem_dispout = 0; // Shared memory control access to the image data (disparity map)
|
---|
103 | }
|
---|
104 |
|
---|
105 | //////////////////////////////////////////////////////////////////////////
|
---|
106 | /// Destructor.
|
---|
107 | ObstacleDetectionComponent::~ObstacleDetectionComponent()
|
---|
108 | {
|
---|
109 | LOG_TRACE(Q_FUNC_INFO);
|
---|
110 |
|
---|
111 | if(this->shmem_ref)
|
---|
112 | delete shmem_ref;
|
---|
113 |
|
---|
114 | this->shmem_ref = NULL;
|
---|
115 |
|
---|
116 | if(this->shmem_dispin)
|
---|
117 | delete shmem_dispin;
|
---|
118 |
|
---|
119 | this->shmem_dispin = NULL;
|
---|
120 |
|
---|
121 | if(this->shmem_mask1)
|
---|
122 | delete shmem_mask1;
|
---|
123 |
|
---|
124 | this->shmem_mask1 = NULL;
|
---|
125 |
|
---|
126 | if(this->shmem_mask2)
|
---|
127 | delete shmem_mask2;
|
---|
128 |
|
---|
129 | this->shmem_mask2 = NULL;
|
---|
130 |
|
---|
131 | if(this->shmem_dispout)
|
---|
132 | delete shmem_dispout;
|
---|
133 |
|
---|
134 | this->shmem_dispout = NULL;
|
---|
135 |
|
---|
136 | }
|
---|
137 |
|
---|
138 | //////////////////////////////////////////////////////////////////////////
|
---|
139 | /// Called by the ComponentManager to start the component
|
---|
140 | void ObstacleDetectionComponent::startActivity()
|
---|
141 | {
|
---|
142 | LOG_TRACE(Q_FUNC_INFO);
|
---|
143 |
|
---|
144 | this->mMaxImageInputSize1 = sizeof(unsigned char) * this->cam_width * this->cam_height * this->cam_channels;
|
---|
145 | this->mMaxImageInputSize2 = sizeof(unsigned short) * this->cam_width * this->cam_height;
|
---|
146 | this->mMaxImageOutputSize = sizeof(unsigned char) * this->cam_width * this->cam_height;
|
---|
147 |
|
---|
148 | this->ref_mem_size = sizeof(TimestampedStructImage) + this->mMaxImageInputSize1;
|
---|
149 | this->dispin_mem_size = sizeof(TimestampedStructImage) + this->mMaxImageInputSize2;
|
---|
150 | this->mask1_mem_size = sizeof(TimestampedStructImage) + this->mMaxImageOutputSize;
|
---|
151 | this->mask2_mem_size = sizeof(TimestampedStructImage) + this->mMaxImageOutputSize;
|
---|
152 | this->dispout_mem_size = sizeof(TimestampedStructImage) + this->mMaxImageInputSize2;
|
---|
153 |
|
---|
154 | // Allocate memory position for the maximum expected data
|
---|
155 | this->ref_mem = malloc(this->ref_mem_size);
|
---|
156 | this->dispin_mem = malloc(this->dispin_mem_size);
|
---|
157 | this->mask1_mem = malloc(this->mask1_mem_size);
|
---|
158 | this->mask2_mem = malloc(this->mask2_mem_size);
|
---|
159 | this->dispout_mem = malloc(this->dispout_mem_size);
|
---|
160 |
|
---|
161 | this->shmem_ref = new ShMem(ObstacleDetectionMemoryName_ref.c_str(), this->ref_mem_size);
|
---|
162 |
|
---|
163 | this->shmem_dispin = new ShMem(ObstacleDetectionMemoryName_dispin.c_str(), this->dispin_mem_size);
|
---|
164 |
|
---|
165 | this->shmem_mask1 = new ShMem(ObstacleDetectionMemoryName_mask1.c_str(), this->mask1_mem_size);
|
---|
166 |
|
---|
167 | this->shmem_mask2 = new ShMem(ObstacleDetectionMemoryName_mask2.c_str(), this->mask2_mem_size);
|
---|
168 |
|
---|
169 | this->shmem_dispout = new ShMem(ObstacleDetectionMemoryName_dispout.c_str(), this->dispout_mem_size);
|
---|
170 |
|
---|
171 | // Run thread
|
---|
172 | THREAD_ALIVE = true;
|
---|
173 | start();
|
---|
174 | }
|
---|
175 |
|
---|
176 | //////////////////////////////////////////////////////////////////////////
|
---|
177 | /// Called by the ComponentManager to stop the component
|
---|
178 | void ObstacleDetectionComponent::stopActivity()
|
---|
179 | {
|
---|
180 | LOG_TRACE(Q_FUNC_INFO);
|
---|
181 |
|
---|
182 | if(THREAD_ALIVE)
|
---|
183 | {
|
---|
184 | // Stop thread
|
---|
185 | THREAD_ALIVE = false;
|
---|
186 |
|
---|
187 | while(is_running)
|
---|
188 | {
|
---|
189 | msleep(/*MS_DELAY*/10);
|
---|
190 | }
|
---|
191 |
|
---|
192 | if(this->shmem_ref)
|
---|
193 | delete shmem_ref;
|
---|
194 |
|
---|
195 | this->shmem_ref = NULL;
|
---|
196 |
|
---|
197 | if(this->shmem_dispin)
|
---|
198 | delete shmem_dispin;
|
---|
199 |
|
---|
200 | this->shmem_dispin = NULL;
|
---|
201 |
|
---|
202 | if(this->shmem_mask1)
|
---|
203 | delete shmem_mask1;
|
---|
204 |
|
---|
205 | this->shmem_mask1 = NULL;
|
---|
206 |
|
---|
207 | if(this->shmem_mask2)
|
---|
208 | delete shmem_mask2;
|
---|
209 |
|
---|
210 | this->shmem_mask2 = NULL;
|
---|
211 |
|
---|
212 | if(this->shmem_dispout)
|
---|
213 | delete shmem_dispout;
|
---|
214 |
|
---|
215 | this->shmem_dispout = NULL;
|
---|
216 |
|
---|
217 | // Free the malloc memories
|
---|
218 | free(this->ref_mem);
|
---|
219 | free(this->dispin_mem);
|
---|
220 | free(this->mask1_mem);
|
---|
221 | free(this->mask2_mem);
|
---|
222 | free(this->dispout_mem);
|
---|
223 |
|
---|
224 | }
|
---|
225 |
|
---|
226 | LOG_INFO("stopped component '" << name() << "'");
|
---|
227 | }
|
---|
228 |
|
---|
229 | //////////////////////////////////////////////////////////////////////////
|
---|
230 | /// Called by the ComponentManager to pass the XML parameters to the
|
---|
231 | /// component
|
---|
232 | ComponentBase::COMPONENT_CONFIGURATION ObstacleDetectionComponent::configureComponent(XmlComponentConfig config)
|
---|
233 | {
|
---|
234 | LOG_TRACE(Q_FUNC_INFO);
|
---|
235 |
|
---|
236 | // Initialize with default values
|
---|
237 | InitDefault();
|
---|
238 |
|
---|
239 | if (config.getProperty("recording") != QString::null)
|
---|
240 | setRecording(config.getProperty("recording").toInt());
|
---|
241 |
|
---|
242 | if (config.getProperty("cam_width") != QString::null)
|
---|
243 | this->cam_width = config.getProperty("cam_width").toInt();
|
---|
244 |
|
---|
245 | if (config.getProperty("cam_height") != QString::null)
|
---|
246 | this->cam_height = config.getProperty("cam_height").toInt();
|
---|
247 |
|
---|
248 | if (config.getProperty("cam_channels") != QString::null)
|
---|
249 | this->cam_channels = config.getProperty("cam_channels").toInt();
|
---|
250 |
|
---|
251 | if (config.getProperty("min_disp") != QString::null)
|
---|
252 | this->min_disp = config.getProperty("min_disp").toInt();
|
---|
253 |
|
---|
254 | if (config.getProperty("max_disp") != QString::null)
|
---|
255 | this->max_disp = config.getProperty("max_disp").toInt();
|
---|
256 |
|
---|
257 | if (config.getProperty("min_disp_norm") != QString::null)
|
---|
258 | this->min_disp_norm = config.getProperty("min_disp_norm").toInt();
|
---|
259 |
|
---|
260 | if (config.getProperty("max_disp_norm") != QString::null)
|
---|
261 | this->max_disp_norm = config.getProperty("max_disp_norm").toInt();
|
---|
262 |
|
---|
263 | if (config.getProperty("showdebug") != QString::null)
|
---|
264 | this->showdebug = (bool)config.getProperty("showdebug").toInt();
|
---|
265 |
|
---|
266 | if (config.getProperty("destiny_roi_x") != QString::null)
|
---|
267 | this->destiny_roi_x = config.getProperty("destiny_roi_x").toInt();
|
---|
268 |
|
---|
269 | if (config.getProperty("destiny_roi_y") != QString::null)
|
---|
270 | this->destiny_roi_y = config.getProperty("destiny_roi_y").toInt();
|
---|
271 |
|
---|
272 | if (config.getProperty("destiny_roi_width") != QString::null)
|
---|
273 | this->destiny_roi_width = config.getProperty("destiny_roi_width").toInt();
|
---|
274 |
|
---|
275 | if (config.getProperty("destiny_roi_height") != QString::null)
|
---|
276 | this->destiny_roi_height = config.getProperty("destiny_roi_height").toInt();
|
---|
277 |
|
---|
278 | if( ((this->destiny_roi_height != this->cam_height)||(this->destiny_roi_width != this->cam_width))&&
|
---|
279 | ((this->destiny_roi_height <= this->cam_height)&&(this->destiny_roi_width <= this->cam_width)) )
|
---|
280 | this->use_roi = true;
|
---|
281 |
|
---|
282 | LOG_INFO("configured component '" << name() << "'");
|
---|
283 | return ComponentBase::CONFIGURED_OK;
|
---|
284 | }
|
---|
285 |
|
---|
286 | /**
|
---|
287 | * Initialize default values
|
---|
288 | */
|
---|
289 | void ObstacleDetectionComponent::InitDefault()
|
---|
290 | {
|
---|
291 | // Default
|
---|
292 | this->cam_width = this->destiny_roi_width = 1280; // Image width
|
---|
293 | this->cam_height = this->destiny_roi_height = 960; // Image height
|
---|
294 |
|
---|
295 | this->destiny_roi_x = this->destiny_roi_y = 0; // Destiny image roi x and y
|
---|
296 |
|
---|
297 | this->use_roi = false;
|
---|
298 | this->min_disp = 0;
|
---|
299 | this->max_disp = 255;
|
---|
300 |
|
---|
301 | this->min_disp_norm = 0; // Minimum disparity value to equalize the disp map 16
|
---|
302 | this->max_disp_norm = 255; // Maximum disparity value to equalize the disp map 16
|
---|
303 |
|
---|
304 | this->showdebug = false; // Show frame acquired
|
---|
305 | }
|
---|
306 |
|
---|
307 | // Thread loop
|
---|
308 | void ObstacleDetectionComponent::run()
|
---|
309 | {
|
---|
310 | LOG_TRACE(Q_FUNC_INFO);
|
---|
311 |
|
---|
312 | this->is_running = true;
|
---|
313 |
|
---|
314 |
|
---|
315 | if(this->CurrentReferenceFrame.cols != this->cam_width)
|
---|
316 | {
|
---|
317 | this->CurrentReferenceFrame = cv::Mat(cv::Size(this->cam_width , this->cam_height), CV_MAKETYPE(CV_8U, this->cam_channels));
|
---|
318 | }
|
---|
319 |
|
---|
320 | // Create the image in which will be read the disparities
|
---|
321 | if(this->CurrentDisparityMap16.cols != this->cam_width)
|
---|
322 | {
|
---|
323 | this->CurrentDisparityMap16 = cv::Mat( this->cam_height, this->cam_width, CV_16S, cv::Scalar(0) );
|
---|
324 | }
|
---|
325 |
|
---|
326 | if(this->CurrentSurfaceMask.cols != this->cam_width)
|
---|
327 | {
|
---|
328 | this->CurrentSurfaceMask = cv::Mat(this->cam_height, this->cam_width, CV_MAKETYPE(CV_8U, 1), cv::Scalar(0) );
|
---|
329 | }
|
---|
330 |
|
---|
331 | if(this->CurrentObstaclesMask.cols != this->cam_width)
|
---|
332 | {
|
---|
333 | this->CurrentObstaclesMask = cv::Mat(this->cam_height, this->cam_width, CV_MAKETYPE(CV_8U, 1), cv::Scalar(0) );
|
---|
334 | }
|
---|
335 |
|
---|
336 | // Images for type convertion
|
---|
337 | cv::Mat Disp_map = cv::Mat( this->CurrentDisparityMap16.rows, this->CurrentDisparityMap16.cols, CV_8UC1 );
|
---|
338 | cv::Mat Disp_map16;
|
---|
339 |
|
---|
340 | // Keeps the last image timestamp;
|
---|
341 | road_time_t last_reading = 0;
|
---|
342 |
|
---|
343 | // Initialize the output images header
|
---|
344 | this->Mask1ImageHeader.image.width = this->cam_width;
|
---|
345 | this->Mask1ImageHeader.image.height = this->cam_height;
|
---|
346 | this->Mask1ImageHeader.image.channels = 1;
|
---|
347 | this->Mask1ImageHeader.image.width_step = (size_t)(this->Mask1ImageHeader.image.height * this->Mask1ImageHeader.image.channels);
|
---|
348 | this->Mask1ImageHeader.image.data_size = this->mMaxImageOutputSize;
|
---|
349 |
|
---|
350 | this->Mask2ImageHeader.image.width = this->cam_width;
|
---|
351 | this->Mask2ImageHeader.image.height = this->cam_height;
|
---|
352 | this->Mask2ImageHeader.image.channels = 1;
|
---|
353 | this->Mask2ImageHeader.image.width_step = (size_t)(this->Mask2ImageHeader.image.height * this->Mask2ImageHeader.image.channels);
|
---|
354 | this->Mask2ImageHeader.image.data_size = this->mMaxImageOutputSize;
|
---|
355 |
|
---|
356 | this->DispOutImageHeader.image.width = this->cam_width;
|
---|
357 | this->DispOutImageHeader.image.height = this->cam_height;
|
---|
358 | this->DispOutImageHeader.image.channels = 1;
|
---|
359 | this->DispOutImageHeader.image.width_step = (size_t)(sizeof(unsigned short)*this->DispOutImageHeader.image.height * this->DispOutImageHeader.image.channels);
|
---|
360 | this->DispOutImageHeader.image.data_size = this->mMaxImageInputSize2;
|
---|
361 |
|
---|
362 | // Time measurement
|
---|
363 | road_time_t init_time = 0;
|
---|
364 |
|
---|
365 | while (THREAD_ALIVE)
|
---|
366 | {
|
---|
367 | init_time = road_time();
|
---|
368 |
|
---|
369 | //LOG_INFO("Grab new image");
|
---|
370 | // header + image
|
---|
371 | this->shmem_ref->read(this->ref_mem, this->ref_mem_size);
|
---|
372 | this->shmem_dispin->read(this->dispin_mem, this->dispin_mem_size);
|
---|
373 |
|
---|
374 | // Header
|
---|
375 | memcpy( &this->RefImageHeader, this->ref_mem, sizeof(TimestampedStructImage));
|
---|
376 | memcpy( &this->DispInImageHeader, this->dispin_mem, sizeof(TimestampedStructImage));
|
---|
377 |
|
---|
378 | // Check image header
|
---|
379 | bool is_ok = false;
|
---|
380 | if( (this->RefImageHeader.image.data_size == this->mMaxImageInputSize1) && (this->RefImageHeader.time != last_reading) &&
|
---|
381 | (this->DispInImageHeader.image.data_size == this->mMaxImageInputSize2) && (this->DispInImageHeader.time == this->RefImageHeader.time) )
|
---|
382 | {
|
---|
383 | is_ok = true;
|
---|
384 | last_reading = this->RefImageHeader.time;
|
---|
385 |
|
---|
386 | /*std::cout << "Expected image w: " << ImageHeader.image.width << std::endl;
|
---|
387 | std::cout << "Expected image h: " << ImageHeader.image.height << std::endl;
|
---|
388 | std::cout << "Expected image c: " << ImageHeader.image.channels << std::endl;
|
---|
389 | std::cout << "Expected image data: " << ImageHeader.image.data_size << std::endl;
|
---|
390 | std::cout << "Expected image size: " << image_mem << std::endl;*/
|
---|
391 | }
|
---|
392 | /*else
|
---|
393 | {
|
---|
394 | LOG_ERROR("Error in the image data size!");
|
---|
395 | }*/
|
---|
396 |
|
---|
397 | if(is_ok)
|
---|
398 | {
|
---|
399 | // Image data
|
---|
400 | memcpy( (unsigned char*)(this->CurrentReferenceFrame.data), (unsigned char*)((TimestampedStructImage*)this->ref_mem + 1), this->RefImageHeader.image.data_size);
|
---|
401 | memcpy( (unsigned short*)(this->CurrentDisparityMap16.data), (unsigned short*)((TimestampedStructImage*)this->dispin_mem + 1), this->DispInImageHeader.image.data_size);
|
---|
402 |
|
---|
403 | if(this->showdebug)
|
---|
404 | {
|
---|
405 | cv::namedWindow( "ObstacleDetectionComponent - Current Reference Frame", CV_WINDOW_NORMAL );
|
---|
406 | cv::imshow("ObstacleDetectionComponent - Current Reference Frame",this->CurrentReferenceFrame);
|
---|
407 | cv::waitKey(1);
|
---|
408 | }
|
---|
409 |
|
---|
410 | //============================================= Obstacle Detection ================================================
|
---|
411 |
|
---|
412 | cv::Mat v_disp_map, u_disp_map;
|
---|
413 |
|
---|
414 | cv::Mat roi_disp = (this->use_roi) ? this->CurrentDisparityMap16(cv::Rect(this->destiny_roi_x, this->destiny_roi_y, this->destiny_roi_width, this->destiny_roi_height)) :
|
---|
415 | this->CurrentDisparityMap16;
|
---|
416 |
|
---|
417 | // U/V disparity maps calculation
|
---|
418 | this->CalcUVDisparityMapNorm(roi_disp, v_disp_map, u_disp_map, Disp_map, this->min_disp_norm, this->max_disp_norm);
|
---|
419 |
|
---|
420 | /*
|
---|
421 | // Real disparity information
|
---|
422 | Disp_map16 = this->CurrentDisparityMap16/16;
|
---|
423 |
|
---|
424 | // Display it as a CV_8UC1 image
|
---|
425 | Disp_map16.convertTo( Disp_map, CV_8UC1);//, double(255)/double(this->max_disp - this->min_disp));
|
---|
426 |
|
---|
427 | if(this->showdebug)
|
---|
428 | {
|
---|
429 | cv::namedWindow( "ObstacleDetectionComponent - Current Disparity Map", CV_WINDOW_AUTOSIZE );
|
---|
430 | cv::imshow("ObstacleDetectionComponent - Current Disparity Map", Disp_map);
|
---|
431 | cv::waitKey(1);
|
---|
432 | }
|
---|
433 |
|
---|
434 | // U/V disparity maps calculation
|
---|
435 | std::pair<cv::Mat,cv::Mat> par_uv = this->CalcUVDisparityMap(Disp_map);
|
---|
436 | cv::Mat v_disp_map = par_uv.second;
|
---|
437 |
|
---|
438 | cv::Mat u_disp_map = par_uv.first;
|
---|
439 | */
|
---|
440 |
|
---|
441 | if(this->showdebug)
|
---|
442 | {
|
---|
443 | cv::namedWindow( "ObstacleDetectionComponent - Current V Disparity Map", CV_WINDOW_AUTOSIZE );
|
---|
444 | cv::imshow("ObstacleDetectionComponent - Current V Disparity Map", v_disp_map);
|
---|
445 |
|
---|
446 | cv::namedWindow( "ObstacleDetectionComponent - Current U Disparity Map", CV_WINDOW_AUTOSIZE );
|
---|
447 | cv::imshow("ObstacleDetectionComponent - Current U Disparity Map", u_disp_map);
|
---|
448 |
|
---|
449 | cv::namedWindow( "ObstacleDetectionComponent - Current Disparity Map Normalized", CV_WINDOW_AUTOSIZE );
|
---|
450 | cv::imshow("ObstacleDetectionComponent - Current Disparity Map Normalized", Disp_map);
|
---|
451 | cv::waitKey(1);
|
---|
452 | }
|
---|
453 |
|
---|
454 | // Image to detect near obstacles
|
---|
455 | cv::Mat v_disp_map2 = v_disp_map.clone();
|
---|
456 |
|
---|
457 | // Find the driveable surface
|
---|
458 | //cv::Mat color_v_disp_map1 = this->FindSurface(v_disp_map, v_disp_map2);
|
---|
459 | cv::Mat color_v_disp_map1 = this->FindSurface2(v_disp_map, v_disp_map2);
|
---|
460 |
|
---|
461 | // Find near obstacles
|
---|
462 | //cv::Mat color_v_disp_map2 = this->FindNearObstacles(v_disp_map2, this->min_disp, this->max_disp);
|
---|
463 | std::pair<cv::Mat, cv::Mat> color_uv_disp_map = this->FindNearObstaclesUV(v_disp_map2, u_disp_map, this->min_disp, this->max_disp);
|
---|
464 |
|
---|
465 | if(this->showdebug)
|
---|
466 | {
|
---|
467 | cv::namedWindow("ObstacleDetectionComponent - Mapa de Disparidade V + Free Space",CV_WINDOW_AUTOSIZE);
|
---|
468 | cv::imshow("ObstacleDetectionComponent - Mapa de Disparidade V + Free Space", color_v_disp_map1);
|
---|
469 |
|
---|
470 | cv::namedWindow("ObstacleDetectionComponent - Mapa de Disparidade V + Obstacles",CV_WINDOW_AUTOSIZE);
|
---|
471 | cv::imshow("ObstacleDetectionComponent - Mapa de Disparidade V + Obstacles", color_uv_disp_map.first);
|
---|
472 |
|
---|
473 | cv::namedWindow("ObstacleDetectionComponent - Mapa de Disparidade U + Obstacles",CV_WINDOW_AUTOSIZE);
|
---|
474 | cv::imshow("ObstacleDetectionComponent - Mapa de Disparidade U + Obstacles", color_uv_disp_map.second);
|
---|
475 | cv::waitKey(1);
|
---|
476 | }
|
---|
477 |
|
---|
478 | // Remap the v-disparity point in the original image and create binary masks
|
---|
479 | //std::pair<cv::Mat, cv::Mat> masks = this->MaskSurface2(Disp_map, color_v_disp_map1, color_uv_disp_map.first, this->min_disp, this->max_disp, 1);
|
---|
480 | std::pair<cv::Mat, cv::Mat> masks = this->MaskSurface3(Disp_map, color_v_disp_map1, color_uv_disp_map.first, color_uv_disp_map.second, this->min_disp, this->max_disp, 1);
|
---|
481 |
|
---|
482 | /*if(this->showdebug)
|
---|
483 | {
|
---|
484 | cv::namedWindow("Mapa de Disparidade V + Mask1",CV_WINDOW_AUTOSIZE);
|
---|
485 | cv::imshow("Mapa de Disparidade V + Mask1", masks.first*255);
|
---|
486 |
|
---|
487 | cv::namedWindow("Mapa de Disparidade V + Mask2",CV_WINDOW_AUTOSIZE);
|
---|
488 | cv::imshow("Mapa de Disparidade V + Mask2", masks.second*255);
|
---|
489 | }*/
|
---|
490 |
|
---|
491 | //---------------------- Remove commun information -------------------------
|
---|
492 |
|
---|
493 | masks.second = masks.second - masks.second.mul( masks.first);
|
---|
494 |
|
---|
495 | //---------------------------------------------------------------------------
|
---|
496 |
|
---|
497 | //------------------ Write the result in the shared memory ------------------
|
---|
498 |
|
---|
499 | if(this->use_roi)
|
---|
500 | {
|
---|
501 | masks.first.copyTo(this->CurrentSurfaceMask(cv::Rect(this->destiny_roi_x, this->destiny_roi_y, this->destiny_roi_width, this->destiny_roi_height)));
|
---|
502 | masks.second.copyTo(this->CurrentObstaclesMask(cv::Rect(this->destiny_roi_x, this->destiny_roi_y, this->destiny_roi_width, this->destiny_roi_height)));
|
---|
503 | }
|
---|
504 | else
|
---|
505 | {
|
---|
506 | this->CurrentSurfaceMask = masks.first;
|
---|
507 | this->CurrentObstaclesMask = masks.second;
|
---|
508 | }
|
---|
509 |
|
---|
510 | //----------------------------- Mask 1 --------------------------------------
|
---|
511 | // Complete timestamp header of the mask image 1
|
---|
512 | this->Mask1ImageHeader.time = this->DispInImageHeader.time;
|
---|
513 | this->Mask1ImageHeader.timerange = this->DispInImageHeader.timerange;
|
---|
514 |
|
---|
515 | // Copy images header and data to memory
|
---|
516 | memcpy(this->mask1_mem, &this->Mask1ImageHeader, sizeof(TimestampedStructImage));
|
---|
517 | memcpy((void*)((TimestampedStructImage*)this->mask1_mem + 1), (void*)this->CurrentSurfaceMask.data, this->Mask1ImageHeader.image.data_size);
|
---|
518 | this->shmem_mask1->write(this->mask1_mem, this->mask1_mem_size);
|
---|
519 |
|
---|
520 | //----------------------------- Mask 2 --------------------------------------
|
---|
521 | // Complete timestamp header of the mask image 2
|
---|
522 | this->Mask2ImageHeader.time = this->DispInImageHeader.time;
|
---|
523 | this->Mask2ImageHeader.timerange = this->DispInImageHeader.timerange;
|
---|
524 |
|
---|
525 | // Copy images header and data to memory
|
---|
526 | memcpy(this->mask2_mem, &this->Mask2ImageHeader, sizeof(TimestampedStructImage));
|
---|
527 | memcpy((void*)((TimestampedStructImage*)this->mask2_mem + 1), (void*)this->CurrentObstaclesMask.data, this->Mask2ImageHeader.image.data_size);
|
---|
528 | this->shmem_mask2->write(this->mask2_mem, this->mask2_mem_size);
|
---|
529 |
|
---|
530 | //------------------------- Disparity map out -------------------------------
|
---|
531 | // Complete timestamp header of the disp image out
|
---|
532 | this->DispOutImageHeader.time = this->DispInImageHeader.time;
|
---|
533 | this->DispOutImageHeader.timerange = this->DispInImageHeader.timerange;
|
---|
534 |
|
---|
535 | // Copy images header and data to memory
|
---|
536 | memcpy(this->dispout_mem, &this->DispOutImageHeader, sizeof(TimestampedStructImage));
|
---|
537 | memcpy((void*)((TimestampedStructImage*)this->dispout_mem + 1), (void*)this->CurrentDisparityMap16.data, this->DispOutImageHeader.image.data_size);
|
---|
538 | this->shmem_dispout->write(this->dispout_mem, this->dispout_mem_size);
|
---|
539 | //---------------------------------------------------------------------------
|
---|
540 |
|
---|
541 | // ----------------- Apply the mask in the reference image ------------------
|
---|
542 | if(this->showdebug)
|
---|
543 | {
|
---|
544 | std::vector<cv::Mat> channels(3);
|
---|
545 | cv::Mat reference;
|
---|
546 | if(this->cam_channels == 1)
|
---|
547 | {
|
---|
548 | cv::Mat img_gray = (this->CurrentReferenceFrame(cv::Rect(this->destiny_roi_x, this->destiny_roi_y, this->destiny_roi_width, this->destiny_roi_height))).clone();
|
---|
549 | cv::cvtColor(img_gray, reference, CV_GRAY2BGR);
|
---|
550 | }
|
---|
551 | else
|
---|
552 | {
|
---|
553 | reference = (this->CurrentReferenceFrame(cv::Rect(this->destiny_roi_x, this->destiny_roi_y, this->destiny_roi_width, this->destiny_roi_height))).clone();
|
---|
554 | }
|
---|
555 |
|
---|
556 | cv::split(reference, channels);
|
---|
557 |
|
---|
558 | masks.second = 1 - masks.second;
|
---|
559 | channels[0] = masks.second.mul(channels[0]); // Activate the red color as obstacles
|
---|
560 | channels[1] = masks.second.mul(channels[1]); // Activate the red color as obstacles
|
---|
561 |
|
---|
562 | masks.second = masks.second - masks.first;
|
---|
563 | channels[0] = (1 - masks.second).mul(channels[0]); // Activate the yellow color for unclassified area
|
---|
564 |
|
---|
565 | cv::merge(channels, reference);
|
---|
566 |
|
---|
567 | cv::namedWindow("ObstacleDetectionComponent - Final Classification",CV_WINDOW_AUTOSIZE);
|
---|
568 | cv::imshow("ObstacleDetectionComponent - Final Classification", reference);
|
---|
569 | }
|
---|
570 | //---------------------------------------------------------------------------
|
---|
571 |
|
---|
572 | //==================================================================================================================
|
---|
573 |
|
---|
574 | //std::cout << componentName.toStdString() << " cicle time: " << (road_time() - init_time)/1000000.0 << std::endl;
|
---|
575 | }
|
---|
576 | else
|
---|
577 | {
|
---|
578 | msleep(/*MS_DELAY*/10);
|
---|
579 | }
|
---|
580 |
|
---|
581 | if(this->showdebug)
|
---|
582 | cv::waitKey(1); // Give the system permission
|
---|
583 |
|
---|
584 | //std::cout << componentName.toStdString() << " cicle time: " << (road_time() - init_time)/1000000.0 << std::endl;
|
---|
585 | }
|
---|
586 |
|
---|
587 | this->is_running = false;
|
---|
588 |
|
---|
589 | // Destroy the window frame
|
---|
590 | if(this->showdebug)
|
---|
591 | cvDestroyAllWindows();
|
---|
592 | }
|
---|
593 |
|
---|
594 | // Function to calculate the U/V disparity map
|
---|
595 | std::pair<cv::Mat, cv::Mat> ObstacleDetectionComponent::CalcUVDisparityMap(cv::Mat disp_map)
|
---|
596 | {
|
---|
597 | int l, c, pixel; // local variables for row, line and pixel
|
---|
598 | unsigned char intensity; // pixel intensity
|
---|
599 |
|
---|
600 | unsigned char* ptr1; // row pointer for 8 bits image
|
---|
601 | //unsigned short* ptr2; // row pointer for 16 bits image
|
---|
602 |
|
---|
603 | // U disparity map iamge
|
---|
604 | cv::Mat u_disp = cv::Mat::zeros(cv::Size(disp_map.cols, 256), CV_8UC1);
|
---|
605 |
|
---|
606 | // V disparity map image
|
---|
607 | cv::Mat v_disp = cv::Mat::zeros(cv::Size(256, disp_map.rows), CV_8UC1);
|
---|
608 |
|
---|
609 | // run accross the image and add 1 to the respective U/V disparity column
|
---|
610 | for (l = 0; l < disp_map.rows; ++l)
|
---|
611 | {
|
---|
612 | ptr1 = disp_map.ptr<unsigned char>(l);
|
---|
613 |
|
---|
614 | for (c = 0; c < disp_map.cols; ++c)
|
---|
615 | {
|
---|
616 | intensity = (unsigned char)ptr1[c];
|
---|
617 |
|
---|
618 | if( (intensity > this->min_disp)&&(intensity < this->max_disp))
|
---|
619 | {
|
---|
620 | pixel = intensity*u_disp.cols + c;
|
---|
621 | u_disp.data[pixel] = (unsigned char)(u_disp.data[pixel] + 1);
|
---|
622 |
|
---|
623 | pixel = l*v_disp.cols + intensity;
|
---|
624 | v_disp.data[pixel] = (unsigned char)(v_disp.data[pixel] + 1);
|
---|
625 | }
|
---|
626 | }
|
---|
627 | }
|
---|
628 |
|
---|
629 | return std::make_pair(u_disp, v_disp);
|
---|
630 | }
|
---|
631 |
|
---|
632 | /* CalcUVDisparityMapNorm
|
---|
633 | Description:
|
---|
634 | Function to calculate the U/V disparity map from a disp map normalized
|
---|
635 | Parameters:
|
---|
636 | disp_map16 = original disparity map 16
|
---|
637 | disp_map_norm = resulted disparity map normalized
|
---|
638 | min_d_norm = Minimum disparity value to equalize the disp map 16
|
---|
639 | max_d_norm = Maximum disparity value to equalize the disp map 16
|
---|
640 | */
|
---|
641 | void ObstacleDetectionComponent::CalcUVDisparityMapNorm(cv::Mat disp_map16, cv::Mat &v_disp_map, cv::Mat &u_disp_map, cv::Mat &disp_map_norm, int min_d_norm, int max_d_norm)
|
---|
642 | {
|
---|
643 | int l, c, pixel; // local variables for row, line and pixel
|
---|
644 | unsigned char intensity; // pixel intensity
|
---|
645 | int intensity_norm; // pixel intensity
|
---|
646 |
|
---|
647 | unsigned char* ptr1; // row pointer for 8 bits image
|
---|
648 | unsigned short* ptr2; // row pointer for 16 bits image
|
---|
649 |
|
---|
650 | // Disparity map image normalized
|
---|
651 | disp_map_norm = cv::Mat::zeros(cv::Size(disp_map16.cols, disp_map16.rows), CV_8UC1);
|
---|
652 |
|
---|
653 | // U disparity map image
|
---|
654 | u_disp_map = cv::Mat::zeros(cv::Size(disp_map16.cols, 256), CV_8UC1);
|
---|
655 |
|
---|
656 | // V disparity map image
|
---|
657 | v_disp_map = cv::Mat::zeros(cv::Size(256, disp_map16.rows), CV_8UC1);
|
---|
658 |
|
---|
659 | // percorre a imagem original e soma 1 na coluna do mapa de disparidade V com a mesma
|
---|
660 | // intensidade do pixel
|
---|
661 | for (l = 0; l < disp_map16.rows; ++l)
|
---|
662 | {
|
---|
663 | ptr1 = disp_map_norm.ptr<unsigned char>(l);
|
---|
664 | ptr2 = disp_map16.ptr<unsigned short>(l);
|
---|
665 |
|
---|
666 | for (c = 0; c < disp_map16.cols; ++c)
|
---|
667 | {
|
---|
668 | intensity = (unsigned char)(ptr2[c]/16);
|
---|
669 | intensity_norm = (int)((float)((ptr2[c]/16.0f - (float)min_d_norm)*(255.0f)/((float)max_d_norm - (float)min_d_norm)) + 0.5f);
|
---|
670 |
|
---|
671 | if( (intensity > this->min_disp)&&(intensity < this->max_disp)&&(intensity_norm > 0)&&(intensity_norm < 255))
|
---|
672 | {
|
---|
673 | pixel = intensity_norm*u_disp_map.cols + c;
|
---|
674 | u_disp_map.data[pixel] = (unsigned char)(u_disp_map.data[pixel] + 1);
|
---|
675 |
|
---|
676 | pixel = l*v_disp_map.cols + intensity_norm;
|
---|
677 | v_disp_map.data[pixel] = (unsigned char)(v_disp_map.data[pixel] + 1);
|
---|
678 |
|
---|
679 | ptr1[c] = (unsigned char)intensity_norm;
|
---|
680 | }
|
---|
681 | }
|
---|
682 | }
|
---|
683 |
|
---|
684 | return;
|
---|
685 | }
|
---|
686 |
|
---|
687 | // Function to find the free space surface from a V-disparity map
|
---|
688 | cv::Mat ObstacleDetectionComponent::FindSurface(cv::Mat &v_disp_map, cv::Mat &v_disp_map2)
|
---|
689 | {
|
---|
690 | // Parameters of canny and hough transform
|
---|
691 | int tshold1 = 154;
|
---|
692 | int tshold2 = 48;
|
---|
693 | int n_points = 48; //59
|
---|
694 | int minLineLenght = 35; //40
|
---|
695 | int maxLineGap = 12;
|
---|
696 |
|
---|
697 |
|
---|
698 | // Binary image
|
---|
699 | cv::Mat Img_bin = v_disp_map.clone();//cvCloneImage(v_disp_map);
|
---|
700 |
|
---|
701 | // Color V disparity map with red lines
|
---|
702 | cv::Mat color_img = cv::Mat( cv::Size(v_disp_map.cols, v_disp_map.rows), CV_8UC3 );
|
---|
703 |
|
---|
704 | // Convert to color image
|
---|
705 | cv::cvtColor(v_disp_map, color_img, CV_GRAY2BGR);
|
---|
706 |
|
---|
707 | cv::equalizeHist( Img_bin, Img_bin);
|
---|
708 |
|
---|
709 | if(this->showdebug)
|
---|
710 | {
|
---|
711 | // Janela de exibicao
|
---|
712 | cv::namedWindow("ObstacleDetectionComponent - Equalized Image",CV_WINDOW_AUTOSIZE);
|
---|
713 | cv::imshow("ObstacleDetectionComponent - Equalized Image", Img_bin);
|
---|
714 | }
|
---|
715 |
|
---|
716 | cv::Canny(Img_bin, Img_bin, tshold1, tshold2, 3);
|
---|
717 |
|
---|
718 | // Closing
|
---|
719 | //cv::dilate(Img_bin, Img_bin, cv::Mat(), cv::Point(-1,-1), 2 );
|
---|
720 | //cv::erode(Img_bin, Img_bin, cv::Mat(), cv::Point(-1,-1), 1 );
|
---|
721 |
|
---|
722 | if(this->showdebug)
|
---|
723 | {
|
---|
724 | // Janela de exibicao
|
---|
725 | cv::namedWindow("ObstacleDetectionComponent - Binary Image",CV_WINDOW_AUTOSIZE);
|
---|
726 | cv::imshow("ObstacleDetectionComponent - Binary Image", Img_bin);
|
---|
727 | }
|
---|
728 |
|
---|
729 | std::vector<cv::Vec4i> lines; //vector for storing the lines found by HoughLine
|
---|
730 |
|
---|
731 | // Probabilistic Hough Transform
|
---|
732 | cv::HoughLinesP( Img_bin, lines, 1, CV_PI/180, n_points, minLineLenght, maxLineGap );
|
---|
733 |
|
---|
734 | //=============================== Use the lines filter to remove invalid segments ============================
|
---|
735 |
|
---|
736 | std::vector<cv::Point> nova_lista = this->LinesFiltering(lines);
|
---|
737 |
|
---|
738 | if(!nova_lista.empty())
|
---|
739 | {
|
---|
740 | cv::Point pt_ant = *(nova_lista.begin());
|
---|
741 |
|
---|
742 | // Filter the mean angle
|
---|
743 | for(std::vector<cv::Point>::iterator it = nova_lista.begin(); it != nova_lista.end(); ++it)
|
---|
744 | {
|
---|
745 | cv::line( color_img, pt_ant, *it, CV_RGB(255,0,0), 8, 8 );
|
---|
746 |
|
---|
747 | pt_ant = *it;
|
---|
748 | }
|
---|
749 | }
|
---|
750 |
|
---|
751 | //============================================================================================================
|
---|
752 |
|
---|
753 | //======================== Remove invalid line segments by slope angle only ==================================
|
---|
754 | //if (lines.size() != 0)
|
---|
755 | //{
|
---|
756 | // cv::Point pt1, pt2;
|
---|
757 | // double theta;
|
---|
758 |
|
---|
759 | // for(int i = 0; i < (int)lines.size();++i)
|
---|
760 | // {
|
---|
761 | // pt1.x = lines[i][0];//(CvPoint*)cvGetSeqElem(lines,i);
|
---|
762 | // pt1.y = lines[i][1];
|
---|
763 | // pt2.x = lines[i][2];
|
---|
764 | // pt2.y = lines[i][3];
|
---|
765 |
|
---|
766 | // CheckPoints(pt1, pt2); //Verifica a ordem dos pontos
|
---|
767 | //
|
---|
768 | // theta = Inclination(pt1, pt2); //calcula a inclinacao da reta encontrada
|
---|
769 |
|
---|
770 | // // Valor atual do angulo em graus
|
---|
771 | // theta = ((theta*360.0)/(2.0*CV_PI));
|
---|
772 |
|
---|
773 | // // Verifica se a reta possui inclinacao para ser possivel plano
|
---|
774 | // if(theta> (90.0 + ANG_VARIATION))
|
---|
775 | // {
|
---|
776 |
|
---|
777 | // //Desenha as retas em vermelho
|
---|
778 | // cv::line( color_img, pt1, pt2, CV_RGB(255,0,0), 4, 8 );
|
---|
779 | // }
|
---|
780 | // }
|
---|
781 | //}
|
---|
782 | //==========================================================================================================
|
---|
783 |
|
---|
784 | std::vector<cv::Mat> channels(3);
|
---|
785 |
|
---|
786 | // Get the V-disparity without detected red lines
|
---|
787 | cv::split(color_img, channels);
|
---|
788 | v_disp_map2 = channels[0];
|
---|
789 |
|
---|
790 | // Janela de exibicao
|
---|
791 | //cv::namedWindow("Mapa de Disparidade V + Hough",CV_WINDOW_AUTOSIZE);
|
---|
792 | //cv::imshow("Mapa de Disparidade V + Hough", color_img);
|
---|
793 | //cv::imshow("Mapa de Disparidade V + Hough", v_disp_map2);
|
---|
794 |
|
---|
795 | return color_img;
|
---|
796 | }
|
---|
797 |
|
---|
798 | /* FindSurface2
|
---|
799 | Description:
|
---|
800 | Function to find the free space surface from a V-disparity map, based on the frontal plane.
|
---|
801 | Return the V-dysparity map with the red line representing the free surface.
|
---|
802 | Parameters:
|
---|
803 | v_disp_map = Original V-disparity map
|
---|
804 | v_disp_map2 = Orignal V-disparity map less the surface detected
|
---|
805 | */
|
---|
806 | cv::Mat ObstacleDetectionComponent::FindSurface2(cv::Mat &v_disp_map, cv::Mat &v_disp_map2)
|
---|
807 | {
|
---|
808 | // Parameters
|
---|
809 | int tshold = 40; // Min threshold for the first max value
|
---|
810 | int tshold2 = 35; // Min threshold for the step variation
|
---|
811 | int maxLineLenght = 25;
|
---|
812 | int min_disp_value = 20;
|
---|
813 |
|
---|
814 | // Binary image
|
---|
815 | cv::Mat Img_bin = v_disp_map.clone();
|
---|
816 | cv::Mat Img_mask = v_disp_map.clone();
|
---|
817 |
|
---|
818 | // Color V disparity map with red lines
|
---|
819 | cv::Mat color_img = cv::Mat( cv::Size(v_disp_map.cols, v_disp_map.rows), CV_8UC3 );
|
---|
820 |
|
---|
821 | // Convert to color image
|
---|
822 | cv::cvtColor(v_disp_map, color_img, CV_GRAY2BGR);
|
---|
823 |
|
---|
824 |
|
---|
825 | //================= Segment the most probable road surface region ===================================
|
---|
826 | /*cv::threshold(Img_mask, Img_mask, tshold, 1, CV_THRESH_BINARY);
|
---|
827 | cv::dilate(Img_mask, Img_mask, cv::Mat(), cv::Point(-1,-1), 2 );
|
---|
828 | cv::erode(Img_mask, Img_mask, cv::Mat(), cv::Point(-1,-1), 1 );
|
---|
829 |
|
---|
830 | if(this->showdebug)
|
---|
831 | {
|
---|
832 | cv::imshow( "ObstacleDetectionComponent - Img_mask", Img_mask*255 );
|
---|
833 | }
|
---|
834 |
|
---|
835 | Img_bin = Img_bin.mul(Img_mask);*/
|
---|
836 | //===================================================================================================
|
---|
837 |
|
---|
838 | // Generate grad_x and grad_y
|
---|
839 | cv::Mat grad, grad_H, grad_S, grad_x, grad_y;
|
---|
840 | cv::Mat abs_grad_x, abs_grad_y;
|
---|
841 |
|
---|
842 | // Gradient X
|
---|
843 | //Scharr( src_gray, grad_x, ddepth, 1, 0, scale, delta, BORDER_DEFAULT );
|
---|
844 | //cv::Sobel( Img_bin, grad_x, CV_16S, 1, 0, 3, 1, 0, cv::BORDER_DEFAULT );
|
---|
845 | //cv::convertScaleAbs( grad_x, abs_grad_x );
|
---|
846 |
|
---|
847 | // Gradient Y
|
---|
848 | //Scharr( src_gray, grad_y, ddepth, 0, 1, scale, delta, BORDER_DEFAULT );
|
---|
849 | cv::Sobel( Img_bin, grad_y, CV_16S, 0, 1, 3, 1, 0, cv::BORDER_DEFAULT );
|
---|
850 | cv::convertScaleAbs( grad_y, abs_grad_y );
|
---|
851 |
|
---|
852 | // Total Gradient (approximate)
|
---|
853 | //cv::addWeighted( abs_grad_x, 0.2, abs_grad_y, 0.8, 0, grad );
|
---|
854 |
|
---|
855 | //abs_grad_y = abs_grad_y*255.0;
|
---|
856 | abs_grad_y.convertTo(Img_mask, CV_8U);
|
---|
857 |
|
---|
858 | cv::threshold(Img_mask, Img_mask, tshold2, 1, CV_THRESH_BINARY);
|
---|
859 | cv::dilate(Img_mask, Img_mask, cv::Mat(), cv::Point(-1,-1), 2 );
|
---|
860 | cv::erode(Img_mask, Img_mask, cv::Mat(), cv::Point(-1,-1), 1 );
|
---|
861 |
|
---|
862 | Img_bin = Img_bin.mul(Img_mask);
|
---|
863 |
|
---|
864 | //cv::equalizeHist( abs_grad_y, Img_bin);
|
---|
865 |
|
---|
866 | if(this->showdebug)
|
---|
867 | {
|
---|
868 | //cv::imshow( "ObstacleDetectionComponent - Sobel X", abs_grad_x );
|
---|
869 | cv::imshow( "ObstacleDetectionComponent - Sobel Y", abs_grad_y );
|
---|
870 | cv::imshow( "ObstacleDetectionComponent - Img_mask", Img_mask*255 );
|
---|
871 | //cv::imshow( "ObstacleDetectionComponent - Sobel", grad );
|
---|
872 | //cv::imshow( "ObstacleDetectionComponent - Equalized Image", Img_bin);
|
---|
873 | }
|
---|
874 |
|
---|
875 | //============================== Mark the most significative points as free space ==============================
|
---|
876 |
|
---|
877 | int row_step_count, last_row_step_count; // Keep the sum of the last valid pixels in the step
|
---|
878 | int previous_col = 0;
|
---|
879 |
|
---|
880 | int left_limit, right_limit; // Auxiliary variables
|
---|
881 |
|
---|
882 | for(int row = Img_bin.rows - 1; row > 0; --row)
|
---|
883 | {
|
---|
884 | row_step_count = 0;
|
---|
885 | last_row_step_count = 0;
|
---|
886 | left_limit = -1;
|
---|
887 | right_limit = -1;
|
---|
888 |
|
---|
889 | unsigned char* ptr1 = Img_bin.ptr<unsigned char>(row);
|
---|
890 |
|
---|
891 | if(previous_col == 0)
|
---|
892 | {
|
---|
893 | for(int col = 0; col < Img_bin.cols; ++col)
|
---|
894 | {
|
---|
895 | // Find max
|
---|
896 | if(ptr1[previous_col] < ptr1[col])
|
---|
897 | {
|
---|
898 | previous_col = col;
|
---|
899 |
|
---|
900 | tshold2 = (int)(0.95*ptr1[previous_col]); // adjust the tshold
|
---|
901 | }
|
---|
902 | }
|
---|
903 |
|
---|
904 | if(ptr1[previous_col] < tshold)
|
---|
905 | {
|
---|
906 | previous_col = 0; // position
|
---|
907 | }
|
---|
908 | }
|
---|
909 |
|
---|
910 | if(previous_col != 0)
|
---|
911 | {
|
---|
912 | int left = (previous_col - maxLineLenght >= 0) ? previous_col-maxLineLenght : 0;
|
---|
913 | int right = (previous_col + maxLineLenght < Img_bin.cols) ? previous_col + maxLineLenght : Img_bin.cols;
|
---|
914 |
|
---|
915 | int limits_found = 0;
|
---|
916 | int l_col = previous_col;
|
---|
917 | int r_col = previous_col;
|
---|
918 |
|
---|
919 | int left_count = 0;
|
---|
920 | int right_count = 0;
|
---|
921 |
|
---|
922 | while(!limits_found)
|
---|
923 | {
|
---|
924 | //------------------------------- To the left ----------------------------------
|
---|
925 | if(left_limit == -1)
|
---|
926 | {
|
---|
927 | if(l_col > left)
|
---|
928 | --l_col;
|
---|
929 | else
|
---|
930 | left_limit = l_col + left_count;
|
---|
931 | }
|
---|
932 |
|
---|
933 | // Find max
|
---|
934 | if(ptr1[previous_col] < ptr1[l_col])
|
---|
935 | {
|
---|
936 | previous_col = l_col;
|
---|
937 | tshold2 = (int)(0.95*ptr1[previous_col]); // adjust the tshold
|
---|
938 | }
|
---|
939 |
|
---|
940 | // Check if the pixel intensity is lower than tshold
|
---|
941 | if(left_count < 5)
|
---|
942 | {
|
---|
943 | if(ptr1[l_col] < tshold2)
|
---|
944 | {
|
---|
945 | ++left_count;
|
---|
946 | }
|
---|
947 | else
|
---|
948 | {
|
---|
949 | left_count = 0;
|
---|
950 | }
|
---|
951 | }
|
---|
952 | else
|
---|
953 | {
|
---|
954 | if(left_limit == -1)
|
---|
955 | left_limit = l_col + left_count;
|
---|
956 | }
|
---|
957 | //------------------------------------------------------------------------------
|
---|
958 |
|
---|
959 | //------------------------------- To the right ----------------------------------
|
---|
960 | if(right_limit == -1)
|
---|
961 | {
|
---|
962 | if(r_col < right)
|
---|
963 | ++r_col;
|
---|
964 | else
|
---|
965 | right_limit = r_col - right_count;
|
---|
966 | }
|
---|
967 |
|
---|
968 | // Find max
|
---|
969 | if(ptr1[previous_col] < ptr1[r_col])
|
---|
970 | {
|
---|
971 | previous_col = r_col;
|
---|
972 | tshold2 = (int)(0.95*ptr1[previous_col]); // adjust the tshold
|
---|
973 | }
|
---|
974 |
|
---|
975 | // Check if the pixel intensity is lower than tshold
|
---|
976 | if(right_count < 5)
|
---|
977 | {
|
---|
978 | if(ptr1[r_col] < tshold2)
|
---|
979 | {
|
---|
980 | ++right_count;
|
---|
981 | }
|
---|
982 | else
|
---|
983 | {
|
---|
984 | right_count = 0;
|
---|
985 | }
|
---|
986 | }
|
---|
987 | else
|
---|
988 | {
|
---|
989 | if(right_limit == -1)
|
---|
990 | right_limit = r_col - right_count;
|
---|
991 | }
|
---|
992 | //------------------------------------------------------------------------------
|
---|
993 |
|
---|
994 | if((left_limit != -1)&&(right_limit != -1))
|
---|
995 | {
|
---|
996 | limits_found = 1;
|
---|
997 | }
|
---|
998 | }
|
---|
999 |
|
---|
1000 | if((left_limit != -1)&&(right_limit != -1)&&(ptr1[previous_col] > tshold2))
|
---|
1001 | {
|
---|
1002 | cv::line( color_img, cv::Point(left_limit, row), cv::Point(right_limit, row), CV_RGB(255,0,0), 1, 8 );
|
---|
1003 | }
|
---|
1004 | }
|
---|
1005 | }
|
---|
1006 |
|
---|
1007 | //==============================================================================================================
|
---|
1008 |
|
---|
1009 | std::vector<cv::Mat> channels(3);
|
---|
1010 |
|
---|
1011 | // Get the V-disparity without detected red lines
|
---|
1012 | cv::split(color_img, channels);
|
---|
1013 | v_disp_map2 = channels[0];
|
---|
1014 |
|
---|
1015 | // Janela de exibicao
|
---|
1016 | //cv::namedWindow("Mapa de Disparidade V + Hough",CV_WINDOW_AUTOSIZE);
|
---|
1017 | //cv::imshow("Mapa de Disparidade V + Hough", color_img);
|
---|
1018 | //cv::imshow("Mapa de Disparidade V + Hough", v_disp_map2);
|
---|
1019 |
|
---|
1020 | return color_img;
|
---|
1021 | }
|
---|
1022 |
|
---|
1023 | // Function to find the free space surface from a V-disparity map with mean average
|
---|
1024 | cv::Mat ObstacleDetectionComponent::FindAverageSurface(cv::Mat &v_disp_map, cv::Mat &v_disp_map2)
|
---|
1025 | {
|
---|
1026 | // Parameters of threshold and hough transform
|
---|
1027 | int tshold1 = 3;
|
---|
1028 | int n_points = 48; //59
|
---|
1029 | int minLineLenght = 35; //40
|
---|
1030 | int maxLineGap = 12;
|
---|
1031 |
|
---|
1032 | // Imagem atual em 32F
|
---|
1033 | cv::Mat v_disp_map_current32F = cv::Mat(cv::Size(v_disp_map.cols, v_disp_map.rows), CV_32F, 1);
|
---|
1034 |
|
---|
1035 | // Converte tipo de imagem
|
---|
1036 | v_disp_map.convertTo(v_disp_map_current32F, CV_32F);//cvConvertScale(v_disp_map, v_disp_map_current32F);
|
---|
1037 |
|
---|
1038 | //Mean disparity map for noise attenuation
|
---|
1039 | static cv::Mat v_disp_map_mean = v_disp_map_current32F.clone();
|
---|
1040 |
|
---|
1041 | // Imagem binária da diferenca
|
---|
1042 | cv::Mat ImgBinaria = v_disp_map.clone();//cvCloneImage(v_disp_map);
|
---|
1043 |
|
---|
1044 | // Color V disparity map with red lines
|
---|
1045 | cv::Mat color_img = cv::Mat( cv::Size(v_disp_map.cols, v_disp_map.rows), CV_8UC3 );
|
---|
1046 |
|
---|
1047 | // Convert to color image
|
---|
1048 | cv::cvtColor(v_disp_map, color_img, CV_GRAY2BGR);
|
---|
1049 |
|
---|
1050 | // Running Average
|
---|
1051 | cv::accumulateWeighted(v_disp_map_current32F, v_disp_map_mean, 0.20);//cvRunningAvg(v_disp_map_current32F, v_disp_map_mean, 0.20);
|
---|
1052 |
|
---|
1053 | // Convert scale
|
---|
1054 | v_disp_map_mean.convertTo( ImgBinaria, CV_8U); //cvConvertScale(v_disp_map_mean, ImgBinaria, 1.0, 0.0);
|
---|
1055 |
|
---|
1056 | // Janela de exibicao
|
---|
1057 | //cv::namedWindow("Imagem Media Movel",CV_WINDOW_AUTOSIZE);
|
---|
1058 | //cv::imshow("Imagem Media Movel", ImgBinaria);
|
---|
1059 |
|
---|
1060 | cv::threshold(ImgBinaria, ImgBinaria, tshold1, 255,CV_THRESH_BINARY);
|
---|
1061 |
|
---|
1062 | // Janela de exibicao
|
---|
1063 | //cv::namedWindow("Mapa de Disparidade V + binarizacao",CV_WINDOW_AUTOSIZE);
|
---|
1064 | //cv::imshow("Mapa de Disparidade V + binarizacao", ImgBinaria);
|
---|
1065 |
|
---|
1066 | // create 3x3 matrix
|
---|
1067 | //static cv::Mat kernel_3x3 = (cv::Mat_<unsigned char>(3,3) << 1, 0, 0, 1, 1, 0, 1, 1, 1);
|
---|
1068 |
|
---|
1069 | // Fechamento
|
---|
1070 | //cv::erode(ImgBinaria,ImgBinaria,NULL, cv::Point(-1,-1), 1);
|
---|
1071 | //cv::erode(ImgBinaria,ImgBinaria,kernel_3x3, cv::Point(1,1), 1);
|
---|
1072 |
|
---|
1073 | // Janela de exibicao
|
---|
1074 | //cv::namedWindow("Mapa de Disparidade V + binarizacao + erode",CV_WINDOW_AUTOSIZE);
|
---|
1075 | //cv::imshow("Mapa de Disparidade V + binarizacao + erode", ImgBinaria);
|
---|
1076 |
|
---|
1077 | // Fechamento
|
---|
1078 | //cv::dilate(ImgBinaria,ImgBinaria,NULL, cv::Point(-1,-1), 1);
|
---|
1079 | //cv::erode(ImgBinaria,ImgBinaria,NULL, cv::Point(-1,-1), 2);
|
---|
1080 |
|
---|
1081 | std::vector<cv::Vec4i> lines; //vector for storing the lines found by HoughLine
|
---|
1082 |
|
---|
1083 | // Probabilistic Hough Transform
|
---|
1084 | cv::HoughLinesP( ImgBinaria, lines, 1, CV_PI/180, n_points, minLineLenght, maxLineGap );
|
---|
1085 |
|
---|
1086 | //=============================== Use the lines filter to remove invalid segments ============================
|
---|
1087 |
|
---|
1088 | //std::vector<cv::Point> nova_lista = this->LinesFiltering(lines);
|
---|
1089 | //
|
---|
1090 | //if(!nova_lista.empty())
|
---|
1091 | //{
|
---|
1092 | // cv::Point pt_ant = *(nova_lista.begin());
|
---|
1093 |
|
---|
1094 | // // Filter the mean angle
|
---|
1095 | // for(std::vector<cv::Point>::iterator it = nova_lista.begin(); it != nova_lista.end(); ++it)
|
---|
1096 | // {
|
---|
1097 | // cv::line( color_img, pt_ant, *it, CV_RGB(255,0,0), 3, 8 );
|
---|
1098 |
|
---|
1099 | // pt_ant = *it;
|
---|
1100 | // }
|
---|
1101 | //}
|
---|
1102 |
|
---|
1103 | //============================================================================================================
|
---|
1104 |
|
---|
1105 | //======================== Remove invalid line segments by slope angle only ==================================
|
---|
1106 | if (lines.size() != 0)
|
---|
1107 | {
|
---|
1108 | cv::Point pt1, pt2;
|
---|
1109 | double theta;
|
---|
1110 |
|
---|
1111 | for(int i = 0; i < (int)lines.size();++i)
|
---|
1112 | {
|
---|
1113 | pt1.x = lines[i][0];//(CvPoint*)cvGetSeqElem(lines,i);
|
---|
1114 | pt1.y = lines[i][1];
|
---|
1115 | pt2.x = lines[i][2];
|
---|
1116 | pt2.y = lines[i][3];
|
---|
1117 |
|
---|
1118 | CheckPoints(pt1, pt2); //Verifica a ordem dos pontos
|
---|
1119 |
|
---|
1120 | theta = Inclination(pt1, pt2); //calcula a inclinacao da reta encontrada
|
---|
1121 |
|
---|
1122 | // Valor atual do angulo em graus
|
---|
1123 | theta = ((theta*360.0)/(2.0*CV_PI));
|
---|
1124 |
|
---|
1125 | // Verifica se a reta possui inclinacao para ser possivel plano
|
---|
1126 | if(theta> (90.0 + ANG_VARIATION))
|
---|
1127 | {
|
---|
1128 |
|
---|
1129 | //Desenha as retas em vermelho
|
---|
1130 | cv::line( color_img, pt1, pt2, CV_RGB(255,0,0), 6, 8 );
|
---|
1131 | }
|
---|
1132 | }
|
---|
1133 | }
|
---|
1134 | //==========================================================================================================
|
---|
1135 |
|
---|
1136 | std::vector<cv::Mat> channels(3);
|
---|
1137 |
|
---|
1138 | // Get the V-disparity without detected red lines
|
---|
1139 | cv::split(color_img, channels);
|
---|
1140 | v_disp_map2 = channels[0];
|
---|
1141 |
|
---|
1142 | // Janela de exibicao
|
---|
1143 | //cv::namedWindow("Mapa de Disparidade V + Hough",CV_WINDOW_AUTOSIZE);
|
---|
1144 | //cv::imshow("Mapa de Disparidade V + Hough", color_img);
|
---|
1145 | //cv::imshow("Mapa de Disparidade V + Hough", v_disp_map2);
|
---|
1146 |
|
---|
1147 | return color_img;
|
---|
1148 | }
|
---|
1149 |
|
---|
1150 | // Function to find the near obstacles from a v-Disparity map
|
---|
1151 | cv::Mat ObstacleDetectionComponent::FindNearObstacles(cv::Mat v_disp_map, int min_d, int max_d)
|
---|
1152 | {
|
---|
1153 | // Parameters of threshold and hough transform
|
---|
1154 | int tshold1 = 3;
|
---|
1155 | int n_points = 15;
|
---|
1156 | int minLineLenght = 10;
|
---|
1157 | int maxLineGap = 12;
|
---|
1158 |
|
---|
1159 | // Image to be processed
|
---|
1160 | cv::Mat v_disp_map_aux = v_disp_map.clone();
|
---|
1161 |
|
---|
1162 | // Image with the obstacles highlighted in red
|
---|
1163 | cv::Mat color_img = cv::Mat( cv::Size(v_disp_map.cols, v_disp_map.rows), CV_8UC3);
|
---|
1164 |
|
---|
1165 | // Convert color space
|
---|
1166 | cv::cvtColor(v_disp_map_aux, color_img, CV_GRAY2BGR);
|
---|
1167 |
|
---|
1168 | // Image binarization
|
---|
1169 | cv::threshold(v_disp_map_aux, v_disp_map_aux, tshold1, 255, CV_THRESH_BINARY);
|
---|
1170 |
|
---|
1171 | // Janela de exibicao
|
---|
1172 | //cv::namedWindow("Mapa de Disparidade V + Threshold 2",CV_WINDOW_AUTOSIZE);
|
---|
1173 | //cv::imshow("Mapa de Disparidade V + Threshold 2", v_disp_map_aux);
|
---|
1174 |
|
---|
1175 | // Define valid ROI
|
---|
1176 | cv::Mat v_disp_map_aux_ROI = v_disp_map_aux(cv::Rect(min_d, 0, max_d-min_d+1, v_disp_map_aux.rows));
|
---|
1177 | cv::Mat color_img_ROI = color_img( cv::Rect(min_d, 0, max_d-min_d+1, v_disp_map_aux.rows));
|
---|
1178 |
|
---|
1179 | std::vector<cv::Vec4i> lines; //vector for storing the lines found by HoughLine
|
---|
1180 |
|
---|
1181 | // Probabilistic hough transform
|
---|
1182 | cv::HoughLinesP( v_disp_map_aux_ROI, lines, 1, CV_PI/180, n_points, minLineLenght, maxLineGap );
|
---|
1183 |
|
---|
1184 | if (lines.size() != 0)
|
---|
1185 | {
|
---|
1186 | cv::Point pt1, pt2;
|
---|
1187 | double theta;
|
---|
1188 |
|
---|
1189 | for(int i = 0; i < (int)lines.size(); ++i)
|
---|
1190 | {
|
---|
1191 | pt1.x = lines[i][0];//(CvPoint*)cvGetSeqElem(lines,i);
|
---|
1192 | pt1.y = lines[i][1];
|
---|
1193 | pt2.x = lines[i][2];
|
---|
1194 | pt2.y = lines[i][3];
|
---|
1195 |
|
---|
1196 | this->CheckPoints(pt1, pt2); //Verify the points order
|
---|
1197 |
|
---|
1198 | theta = this->Inclination(pt1, pt2); // line slope
|
---|
1199 |
|
---|
1200 | // In degrees
|
---|
1201 | theta = ((theta*360.0)/(2.0*CV_PI));
|
---|
1202 |
|
---|
1203 | // Verifica se a reta possui inclinacao para ser possivel plano
|
---|
1204 | if((theta < (90.0 + ANG_VARIATION2))&& (theta > (90.0 - ANG_VARIATION2)))
|
---|
1205 | {
|
---|
1206 | //Desenha as retas em vermelho
|
---|
1207 | cv::line( color_img_ROI, pt1, pt2, CV_RGB(255,0,0), 5, 8 );
|
---|
1208 | }
|
---|
1209 | }
|
---|
1210 | }
|
---|
1211 |
|
---|
1212 | // Janela de exibicao
|
---|
1213 | //cv::namedWindow("Mapa de Disparidade V + Hough1",CV_WINDOW_AUTOSIZE);
|
---|
1214 | //cv::imshow("Mapa de Disparidade V + Hough1", v_disp_map_aux);
|
---|
1215 |
|
---|
1216 | // Janela de exibicao
|
---|
1217 | //cv::namedWindow("Mapa de Disparidade V + Hough2",CV_WINDOW_AUTOSIZE);
|
---|
1218 | //cv::imshow("Mapa de Disparidade V + Hough2", color_img);
|
---|
1219 |
|
---|
1220 | return color_img;
|
---|
1221 | }
|
---|
1222 |
|
---|
1223 | // Function to find the near obstacles from the v/u-Disparity maps
|
---|
1224 | std::pair<cv::Mat, cv::Mat> ObstacleDetectionComponent::FindNearObstaclesUV(cv::Mat v_disp_map, cv::Mat u_disp_map, int min_d, int max_d)
|
---|
1225 | {
|
---|
1226 | // Parameters of threshold and hough transform
|
---|
1227 | int tshold1 = 3;
|
---|
1228 | int tshold2 = 15;
|
---|
1229 | int n_points = 15;
|
---|
1230 | int minLineLenght = 10;
|
---|
1231 | int maxLineGap = 12;
|
---|
1232 |
|
---|
1233 | std::vector<cv::Mat> channels(3);
|
---|
1234 |
|
---|
1235 | //=================================== V-disparity map process =============================================================
|
---|
1236 | //// Image to be processed
|
---|
1237 | //cv::Mat v_disp_map_aux = v_disp_map.clone();
|
---|
1238 | //
|
---|
1239 | //// Image with the obstacles highlighted in red
|
---|
1240 | //cv::Mat v_color_img = cv::Mat( cv::Size(v_disp_map.cols, v_disp_map.rows), CV_8UC3);
|
---|
1241 |
|
---|
1242 | //// Convert color space
|
---|
1243 | //cv::cvtColor(v_disp_map_aux, v_color_img, CV_GRAY2BGR);
|
---|
1244 |
|
---|
1245 | //cv::equalizeHist( v_disp_map_aux, v_disp_map_aux);
|
---|
1246 |
|
---|
1247 | //// Image binarization
|
---|
1248 | //cv::threshold(v_disp_map_aux, v_disp_map_aux, tshold1, 255, CV_THRESH_BINARY);
|
---|
1249 |
|
---|
1250 | //// Janela de exibicao
|
---|
1251 | //if(this->showdebug)
|
---|
1252 | //{
|
---|
1253 | // cv::namedWindow("Mapa de Disparidade V + Threshold 2",CV_WINDOW_AUTOSIZE);
|
---|
1254 | // cv::imshow("Mapa de Disparidade V + Threshold 2", v_disp_map_aux);
|
---|
1255 | //}
|
---|
1256 |
|
---|
1257 | //// Define valid ROI
|
---|
1258 | //cv::Mat v_disp_map_aux_ROI = v_disp_map_aux(cv::Rect(min_d, 0, max_d-min_d+1, v_disp_map_aux.rows));
|
---|
1259 | //cv::Mat v_color_img_ROI = v_color_img( cv::Rect(min_d, 0, max_d-min_d+1, v_disp_map_aux.rows));
|
---|
1260 |
|
---|
1261 | //std::vector<cv::Vec4i> lines; //vector for storing the lines found by HoughLine
|
---|
1262 |
|
---|
1263 | //// Probabilistic hough transform
|
---|
1264 | //cv::HoughLinesP( v_disp_map_aux_ROI, lines, 1, CV_PI/180, n_points, minLineLenght, maxLineGap );
|
---|
1265 | //
|
---|
1266 | //if (lines.size() != 0)
|
---|
1267 | //{
|
---|
1268 | // cv::Point pt1, pt2;
|
---|
1269 | // double theta;
|
---|
1270 |
|
---|
1271 | // for(int i = 0; i < (int)lines.size(); ++i)
|
---|
1272 | // {
|
---|
1273 | // pt1.x = lines[i][0];//(CvPoint*)cvGetSeqElem(lines,i);
|
---|
1274 | // pt1.y = lines[i][1];
|
---|
1275 | // pt2.x = lines[i][2];
|
---|
1276 | // pt2.y = lines[i][3];
|
---|
1277 |
|
---|
1278 | // this->CheckPoints(pt1, pt2); //Verify the points order
|
---|
1279 | //
|
---|
1280 | // theta = this->Inclination(pt1, pt2); // line slope
|
---|
1281 |
|
---|
1282 | // // In degrees
|
---|
1283 | // theta = ((theta*360.0)/(2.0*CV_PI));
|
---|
1284 |
|
---|
1285 | // // Verifica se a reta possui inclinacao para ser possivel plano
|
---|
1286 | // //if((theta < (90.0 + ANG_VARIATION2))&& (theta > (90.0 - ANG_VARIATION2)))
|
---|
1287 | // //{
|
---|
1288 | // //Desenha as retas em vermelho
|
---|
1289 | // cv::line( v_color_img_ROI, pt1, pt2, CV_RGB(255,0,0), 5, 8 );
|
---|
1290 | // //}
|
---|
1291 | // }
|
---|
1292 | //}
|
---|
1293 | //
|
---|
1294 | //// Janela de exibicao
|
---|
1295 | ////cv::namedWindow("Mapa de Disparidade V + Hough1",CV_WINDOW_AUTOSIZE);
|
---|
1296 | ////cv::imshow("Mapa de Disparidade V + Hough1", v_disp_map_aux);
|
---|
1297 |
|
---|
1298 | //// Janela de exibicao
|
---|
1299 | ////cv::namedWindow("Mapa de Disparidade V + Hough2",CV_WINDOW_AUTOSIZE);
|
---|
1300 | ////cv::imshow("Mapa de Disparidade V + Hough2", color_img);
|
---|
1301 |
|
---|
1302 | //================================================================================================================================
|
---|
1303 |
|
---|
1304 | //============================================== V-disparity map process =========================================================
|
---|
1305 | // Image to be processed
|
---|
1306 | cv::Mat v_disp_map_aux = v_disp_map.clone();
|
---|
1307 |
|
---|
1308 | // Image with the obstacles highlighted in red
|
---|
1309 | cv::Mat v_color_img = cv::Mat( v_disp_map.rows, v_disp_map.cols, CV_8UC3, cv::Scalar(0,0,0));
|
---|
1310 |
|
---|
1311 | // Convert color space
|
---|
1312 | //cv::cvtColor(v_disp_map_aux, v_color_img, CV_GRAY2BGR);
|
---|
1313 |
|
---|
1314 | //cv::equalizeHist( v_disp_map_aux, v_disp_map_aux);
|
---|
1315 |
|
---|
1316 | // Image binarization
|
---|
1317 | cv::threshold(v_disp_map_aux, v_disp_map_aux, tshold1, 255, CV_THRESH_BINARY);
|
---|
1318 |
|
---|
1319 | // Janela de exibicao
|
---|
1320 | if(this->showdebug)
|
---|
1321 | {
|
---|
1322 | cv::namedWindow("Mapa de Disparidade V + Threshold 2",CV_WINDOW_AUTOSIZE);
|
---|
1323 | cv::imshow("Mapa de Disparidade V + Threshold 2", v_disp_map_aux);
|
---|
1324 | }
|
---|
1325 |
|
---|
1326 | // Define valid ROI
|
---|
1327 | cv::Mat v_disp_map_aux_ROI = v_disp_map_aux(cv::Rect(min_d, 0, max_d-min_d+1, v_disp_map_aux.rows));
|
---|
1328 | cv::Mat v_color_img_ROI = v_color_img( cv::Rect(min_d, 0, max_d-min_d+1, v_disp_map_aux.rows));
|
---|
1329 |
|
---|
1330 | cv::split( v_color_img, channels);
|
---|
1331 | channels[2] = v_disp_map_aux;
|
---|
1332 | cv::merge( channels, v_color_img);
|
---|
1333 |
|
---|
1334 | //================================================================================================================================
|
---|
1335 |
|
---|
1336 | //=============================================== U-disparity map process ========================================================
|
---|
1337 | // Image to be processed
|
---|
1338 | cv::Mat u_disp_map_aux = u_disp_map.clone();
|
---|
1339 |
|
---|
1340 | // Image with the obstacles highlighted in red
|
---|
1341 | cv::Mat u_color_img = cv::Mat( cv::Size(u_disp_map.cols, u_disp_map.rows), CV_8UC3, cv::Scalar(0, 0, 0));
|
---|
1342 |
|
---|
1343 | // Convert color space
|
---|
1344 | //cv::cvtColor(u_disp_map_aux, u_color_img, CV_GRAY2BGR);
|
---|
1345 |
|
---|
1346 | // Image binarization
|
---|
1347 | cv::threshold(u_disp_map_aux, u_disp_map_aux, tshold2, 255, CV_THRESH_BINARY);
|
---|
1348 |
|
---|
1349 | // Closing
|
---|
1350 | cv::dilate(u_disp_map_aux, u_disp_map_aux, cv::Mat(), cv::Point(-1,-1), 1 );
|
---|
1351 | cv::erode(u_disp_map_aux, u_disp_map_aux, cv::Mat(), cv::Point(-1,-1), 1 );
|
---|
1352 |
|
---|
1353 |
|
---|
1354 | if(this->showdebug)
|
---|
1355 | {
|
---|
1356 | // Janela de exibicao
|
---|
1357 | cv::namedWindow("ObstacleDetectionComponent - Image bin u-disp",CV_WINDOW_AUTOSIZE);
|
---|
1358 | cv::imshow("ObstacleDetectionComponent - Image bin u-disp", u_disp_map_aux);
|
---|
1359 | }
|
---|
1360 |
|
---|
1361 | cv::split( u_color_img, channels);
|
---|
1362 | channels[2] = u_disp_map_aux;
|
---|
1363 | cv::merge( channels, u_color_img);
|
---|
1364 |
|
---|
1365 | // Define valid ROI
|
---|
1366 | //cv::Mat u_disp_map_aux_ROI = v_disp_map_aux(cv::Rect(min_d, 0, max_d-min_d+1, v_disp_map_aux.rows));
|
---|
1367 | //cv::Mat u_color_img_ROI = v_color_img( cv::Rect(min_d, 0, max_d-min_d+1, v_disp_map_aux.rows));
|
---|
1368 | //================================================================================================================================
|
---|
1369 |
|
---|
1370 | return std::make_pair(v_color_img, u_color_img);
|
---|
1371 | }
|
---|
1372 |
|
---|
1373 | /* LinesFiltering
|
---|
1374 | Description:
|
---|
1375 | Filter the detected lines related to the distance and angle between them.
|
---|
1376 | Parameters:
|
---|
1377 | lines = line list (point 1 and 2)
|
---|
1378 | */
|
---|
1379 | std::vector<cv::Point> ObstacleDetectionComponent::LinesFiltering(std::vector<cv::Vec4i> lines)
|
---|
1380 | {
|
---|
1381 | std::vector<cv::Point> lista_pontos;
|
---|
1382 |
|
---|
1383 | std::vector<cv::Point> lista_retorno;
|
---|
1384 |
|
---|
1385 | std::vector<double> angles;
|
---|
1386 |
|
---|
1387 | cv::Point pt1, pt2;
|
---|
1388 | double theta;
|
---|
1389 | double angulo_medio = 0.0;
|
---|
1390 |
|
---|
1391 | if (lines.size() != 0)
|
---|
1392 | {
|
---|
1393 | //std::cout << "Found "<< lines.size() << " lines!\n";
|
---|
1394 |
|
---|
1395 | // Filtro de angulo maximo
|
---|
1396 | for(int i = 0; i < (int)lines.size(); ++i)
|
---|
1397 | {
|
---|
1398 | pt1.x = lines[i][0];//(CvPoint*)cvGetSeqElem(lines,i);
|
---|
1399 | pt1.y = lines[i][1];
|
---|
1400 | pt2.x = lines[i][2];
|
---|
1401 | pt2.y = lines[i][3];
|
---|
1402 |
|
---|
1403 | CheckPoints(pt1, pt2); //Verifica a ordem dos pontos
|
---|
1404 |
|
---|
1405 | theta = Inclination(pt1, pt2); //calcula a inclinacao da reta encontrada
|
---|
1406 |
|
---|
1407 | // Valor atual do angulo em graus
|
---|
1408 | theta = ((theta*360.0)/(2.0*CV_PI));
|
---|
1409 |
|
---|
1410 | //std::cout << "Angle "<< theta << "!\n";
|
---|
1411 |
|
---|
1412 | // Verifica se a reta possui inclinacao para ser possivel plano
|
---|
1413 | if(theta> (90.0 + ANG_VARIATION))
|
---|
1414 | {
|
---|
1415 | lista_pontos.push_back(pt1);
|
---|
1416 | lista_pontos.push_back(pt2);
|
---|
1417 |
|
---|
1418 | angles.push_back(theta);
|
---|
1419 | }
|
---|
1420 | }
|
---|
1421 |
|
---|
1422 | if(!lista_pontos.empty())
|
---|
1423 | {
|
---|
1424 | std::sort(lista_pontos.begin(), lista_pontos.end(), ComparePoints1);
|
---|
1425 | angulo_medio = this->CalcMedian(angles);
|
---|
1426 | }
|
---|
1427 |
|
---|
1428 | CvPoint last_item;
|
---|
1429 |
|
---|
1430 | // Percorre os pontos ordenados e procura a casca convexa mais a esquerda
|
---|
1431 | for(std::vector<cv::Point>::iterator it = lista_pontos.begin(); it != lista_pontos.end(); ++it)
|
---|
1432 | {
|
---|
1433 | if(lista_retorno.empty())
|
---|
1434 | {
|
---|
1435 | lista_retorno.push_back(*it);
|
---|
1436 |
|
---|
1437 | last_item = *it;
|
---|
1438 | }
|
---|
1439 | else
|
---|
1440 | {
|
---|
1441 | if( (it + 1) != lista_pontos.end())
|
---|
1442 | {
|
---|
1443 | // Se tiverem o mesmo y, substitui o ponto
|
---|
1444 | if(last_item.y == (*it).y)
|
---|
1445 | {
|
---|
1446 | // Troca o ultimo elemento
|
---|
1447 | lista_retorno.pop_back();
|
---|
1448 |
|
---|
1449 | lista_retorno.push_back(*it);
|
---|
1450 |
|
---|
1451 | last_item = *it;
|
---|
1452 | }
|
---|
1453 | else
|
---|
1454 | {
|
---|
1455 | theta = Inclination(*it, last_item); //calcula a inclinacao da reta encontrada
|
---|
1456 |
|
---|
1457 | // Valor atual do angulo em graus
|
---|
1458 | theta = ((theta*360.0)/(2.0*CV_PI));
|
---|
1459 |
|
---|
1460 | lista_retorno.push_back(*it);
|
---|
1461 |
|
---|
1462 | // Percorre os pontos ordenados e procura o maior angulo entre a casca convexa mais a esquerda
|
---|
1463 | for(std::vector<cv::Point>::iterator it2 = it + 1; it2 != lista_pontos.end(); ++it2)
|
---|
1464 | {
|
---|
1465 | // Verifica se o angulo atual e menor que o anterior
|
---|
1466 | if(theta < ((Inclination(*it2, last_item)*360.0)/(2.0*CV_PI)))
|
---|
1467 | {
|
---|
1468 | // Troca o ultimo elemento
|
---|
1469 | lista_retorno.pop_back();
|
---|
1470 |
|
---|
1471 | lista_retorno.push_back(*it2);
|
---|
1472 |
|
---|
1473 | theta = Inclination(*it2, last_item); //calcula a inclinacao da reta encontrada
|
---|
1474 |
|
---|
1475 | // Valor atual do angulo em graus
|
---|
1476 | theta = ((theta*360.0)/(2.0*CV_PI));
|
---|
1477 |
|
---|
1478 | it = it2;
|
---|
1479 | }
|
---|
1480 | } // for
|
---|
1481 |
|
---|
1482 | last_item = *it;
|
---|
1483 | } // else
|
---|
1484 | } // if( (it + 1) != lista_pontos.end())
|
---|
1485 | } // else
|
---|
1486 | } // for
|
---|
1487 |
|
---|
1488 | if(!lista_retorno.empty())
|
---|
1489 | {
|
---|
1490 | last_item = *(lista_retorno.begin());
|
---|
1491 |
|
---|
1492 | // Filtro de angulo medio
|
---|
1493 | for(std::vector<cv::Point>::iterator it = lista_retorno.begin() + 1; it != lista_retorno.end(); ++it)
|
---|
1494 | {
|
---|
1495 | theta = Inclination(*it, last_item); //calcula a inclinacao da reta encontrada
|
---|
1496 |
|
---|
1497 | // Valor atual do angulo em graus
|
---|
1498 | theta = ((theta*360.0)/(2.0*CV_PI));
|
---|
1499 |
|
---|
1500 | // Verifica se a reta possui inclinacao fora da media
|
---|
1501 | if(theta < (0.95*angulo_medio))//((theta > (1.05*angulo_medio))&&(theta < (0.95*angulo_medio)))
|
---|
1502 | {
|
---|
1503 | lista_retorno.resize(it - lista_retorno.begin());
|
---|
1504 |
|
---|
1505 | break;
|
---|
1506 | }
|
---|
1507 |
|
---|
1508 | last_item = *it;
|
---|
1509 | }
|
---|
1510 | }
|
---|
1511 |
|
---|
1512 | }
|
---|
1513 |
|
---|
1514 | return lista_retorno;
|
---|
1515 | }
|
---|
1516 |
|
---|
1517 | //Function to check the points order, making the second one with the highest y ever
|
---|
1518 | void ObstacleDetectionComponent::CheckPoints(cv::Point &pt1, cv::Point &pt2)
|
---|
1519 | {
|
---|
1520 | int aux_x, aux_y;
|
---|
1521 |
|
---|
1522 | if(pt1.y > pt2.y)
|
---|
1523 | {
|
---|
1524 | aux_x = pt1.x;
|
---|
1525 | aux_y = pt1.y;
|
---|
1526 |
|
---|
1527 | pt1.x = pt2.x;
|
---|
1528 | pt1.y = pt2.y;
|
---|
1529 |
|
---|
1530 | pt2.x = aux_x;
|
---|
1531 | pt2.y = aux_y;
|
---|
1532 | }
|
---|
1533 |
|
---|
1534 | return;
|
---|
1535 | }
|
---|
1536 |
|
---|
1537 | // Function to calculate the line slope of pt1 to pt2
|
---|
1538 | double ObstacleDetectionComponent::Inclination(cv::Point pt1, cv::Point pt2)
|
---|
1539 | {
|
---|
1540 | double theta; //angle
|
---|
1541 |
|
---|
1542 | theta = fabs((atan2((pt1.y-pt2.y+0.0),(pt1.x-pt2.x+0.0)))); // slope
|
---|
1543 |
|
---|
1544 | return theta;
|
---|
1545 | }
|
---|
1546 |
|
---|
1547 | /* CalcMedian
|
---|
1548 | Description:
|
---|
1549 | Calcule the median value of a vector.
|
---|
1550 | Parametros:
|
---|
1551 | vector = vector with data to calculate the median
|
---|
1552 | */
|
---|
1553 | template<class A>
|
---|
1554 | A ObstacleDetectionComponent::CalcMedian(std::vector<A> vetor) const
|
---|
1555 | {
|
---|
1556 | A mediana;
|
---|
1557 |
|
---|
1558 | std::sort(vetor.begin(), vetor.end());
|
---|
1559 |
|
---|
1560 | mediana = vetor[(int)((double)(vetor.size())/2.0 + 0.5) - 1];
|
---|
1561 |
|
---|
1562 | return mediana;
|
---|
1563 | }
|
---|
1564 |
|
---|
1565 | // Function to calculate the free space (v_disp_1) and obstacles (v_disp_2) masks from
|
---|
1566 | // a red highlighted V-Disparity map
|
---|
1567 | std::pair<cv::Mat, cv::Mat> ObstacleDetectionComponent::MaskSurface2(cv::Mat disp_map, cv::Mat v_disp_1, cv::Mat v_disp_2, int min_d, int max_d, int value)
|
---|
1568 | {
|
---|
1569 | // Free space mask
|
---|
1570 | cv::Mat mask1;
|
---|
1571 |
|
---|
1572 | // Obstacle Mask
|
---|
1573 | cv::Mat mask2;
|
---|
1574 |
|
---|
1575 | // Fill the destiny images with background value
|
---|
1576 | if(value == 1)
|
---|
1577 | {
|
---|
1578 | mask1 = cv::Mat::zeros( cv::Size(disp_map.cols, disp_map.rows), CV_8UC1 );
|
---|
1579 | mask2 = cv::Mat::zeros( cv::Size(disp_map.cols, disp_map.rows), CV_8UC1 );
|
---|
1580 | }
|
---|
1581 | else
|
---|
1582 | {
|
---|
1583 | mask1 = cv::Mat::ones( cv::Size(disp_map.cols, disp_map.rows), CV_8UC1 );
|
---|
1584 | mask2 = cv::Mat::ones( cv::Size(disp_map.cols, disp_map.rows), CV_8UC1 );
|
---|
1585 | }
|
---|
1586 |
|
---|
1587 | int l, c, pixel, v_disp_pixel; // local variables for row, column and pixel
|
---|
1588 | unsigned char intensity; // pixel intensity
|
---|
1589 | unsigned char intensity_B, intensity_G, intensity_R; //pixel intensity
|
---|
1590 |
|
---|
1591 | /*uint8_t* pixelPtr_mask1 = (uint8_t*)mask1.data;
|
---|
1592 | uint8_t* pixelPtr_mask2 = (uint8_t*)mask2.data;
|
---|
1593 | uint8_t* pixelPtr_disp_map = (uint8_t*)disp_map.data;
|
---|
1594 | uint8_t* pixelPtr_v_disp1 = (uint8_t*)v_disp_1.data;
|
---|
1595 | uint8_t* pixelPtr_v_disp2 = (uint8_t*)v_disp_2.data;*/
|
---|
1596 |
|
---|
1597 | // run the images associating the red pixels in the v-disparities in the mask1 e mask2
|
---|
1598 | for (l = 0; l < disp_map.rows; ++l)
|
---|
1599 | {
|
---|
1600 | for (c = 0; c < disp_map.cols; ++c)
|
---|
1601 | {
|
---|
1602 | pixel = l*disp_map.cols + c;
|
---|
1603 |
|
---|
1604 | intensity = (unsigned char)disp_map.data[pixel];
|
---|
1605 |
|
---|
1606 | //--------- Marca os planos trafegaveis --------------------
|
---|
1607 | // Pixel Azul
|
---|
1608 | v_disp_pixel = l*v_disp_1.cols*3 + intensity*3;
|
---|
1609 | intensity_B = (unsigned char)v_disp_1.data[v_disp_pixel];
|
---|
1610 |
|
---|
1611 | // Pixel Verde
|
---|
1612 | v_disp_pixel = l*v_disp_1.cols*3 + intensity*3 + 1;
|
---|
1613 | intensity_G = (unsigned char)v_disp_1.data[v_disp_pixel];
|
---|
1614 |
|
---|
1615 | // Pixel Vermelho
|
---|
1616 | v_disp_pixel = l*v_disp_1.cols*3 + intensity*3 + 2;
|
---|
1617 | intensity_R = (unsigned char)v_disp_1.data[v_disp_pixel];
|
---|
1618 |
|
---|
1619 | if((intensity_B == 0)&&(intensity_G == 0)&&(intensity_R == 255))
|
---|
1620 | {
|
---|
1621 | mask1.data[pixel] = value;
|
---|
1622 | }
|
---|
1623 | //----------------------------------------------------------
|
---|
1624 |
|
---|
1625 | //--------- Marca os obstaculos ----------------------------
|
---|
1626 | if( (intensity >= min_d)&&(intensity <= max_d))
|
---|
1627 | {
|
---|
1628 | // Pixel Azul
|
---|
1629 | v_disp_pixel = l*v_disp_2.cols*3 + intensity*3;
|
---|
1630 | intensity_B = (unsigned char)v_disp_2.data[v_disp_pixel];
|
---|
1631 |
|
---|
1632 | // Pixel Verde
|
---|
1633 | v_disp_pixel = l*v_disp_2.cols*3 + intensity*3 + 1;
|
---|
1634 | intensity_G = (unsigned char)v_disp_2.data[v_disp_pixel];
|
---|
1635 |
|
---|
1636 | // Pixel Vermelho
|
---|
1637 | v_disp_pixel = l*v_disp_2.cols*3 + intensity*3 + 2;
|
---|
1638 | intensity_R = (unsigned char)v_disp_2.data[v_disp_pixel];
|
---|
1639 |
|
---|
1640 | if((intensity_B == 0)&&(intensity_G == 0)&&(intensity_R == 255))
|
---|
1641 | {
|
---|
1642 | mask2.data[pixel] = value;
|
---|
1643 | }
|
---|
1644 | }
|
---|
1645 | //----------------------------------------------------------
|
---|
1646 | }
|
---|
1647 | }
|
---|
1648 |
|
---|
1649 | /*cv::Mat element = cv::getStructuringElement( cv::MORPH_RECT,
|
---|
1650 | cv::Size( 3, 3 ),
|
---|
1651 | cv::Point( 1, 1 ) );*/
|
---|
1652 |
|
---|
1653 | // Espande as regioes brancas da imagem
|
---|
1654 | if(value == 1)
|
---|
1655 | {
|
---|
1656 | //cv::dilate(mask1, mask1, element, cv::Point(1,1), 2);
|
---|
1657 | //cv::dilate(mask2, mask2, element, cv::Point(1,1), 2);
|
---|
1658 |
|
---|
1659 | cv::dilate(mask1, mask1, cv::Mat(), cv::Point(-1,-1), 2 );
|
---|
1660 | cv::dilate(mask2, mask2, cv::Mat(), cv::Point(-1,-1), 2 );
|
---|
1661 | }
|
---|
1662 | else
|
---|
1663 | {
|
---|
1664 | //cv::erode(mask1, mask1, element, cv::Point(1,1), 2);
|
---|
1665 | //cv::erode(mask2, mask2, element, cv::Point(1,1), 2);
|
---|
1666 |
|
---|
1667 | cv::erode(mask1,mask1,NULL, cv::Point(-1,-1), 2);
|
---|
1668 | cv::erode(mask2,mask2,NULL, cv::Point(-1,-1), 2);
|
---|
1669 | }
|
---|
1670 |
|
---|
1671 | //cvNamedWindow("Imagem da mascara1",CV_WINDOW_AUTOSIZE);
|
---|
1672 | //cvShowImage("Imagem da mascara1", mask1);
|
---|
1673 |
|
---|
1674 | //cvNamedWindow("Imagem da mascara2",CV_WINDOW_AUTOSIZE);
|
---|
1675 | //cvShowImage("Imagem da mascara2", mask2);
|
---|
1676 |
|
---|
1677 | return std::make_pair(mask1, mask2);
|
---|
1678 | }
|
---|
1679 |
|
---|
1680 | // Function to calculate the free space (v_disp_1) and obstacles (v_disp_2/u_disp) masks from
|
---|
1681 | // a red highlighted V-Disparity map
|
---|
1682 | std::pair<cv::Mat, cv::Mat> ObstacleDetectionComponent::MaskSurface3(cv::Mat disp_map, cv::Mat v_disp_1, cv::Mat v_disp_2, cv::Mat u_disp, int min_d, int max_d, int value)
|
---|
1683 | {
|
---|
1684 | // Free space mask
|
---|
1685 | cv::Mat mask1;
|
---|
1686 |
|
---|
1687 | // Obstacle Mask
|
---|
1688 | cv::Mat mask2;
|
---|
1689 |
|
---|
1690 | // Fill the destiny images with background value
|
---|
1691 | if(value == 1)
|
---|
1692 | {
|
---|
1693 | mask1 = cv::Mat::zeros( cv::Size(disp_map.cols, disp_map.rows), CV_8UC1 );
|
---|
1694 | mask2 = cv::Mat::zeros( cv::Size(disp_map.cols, disp_map.rows), CV_8UC1 );
|
---|
1695 | }
|
---|
1696 | else
|
---|
1697 | {
|
---|
1698 | mask1 = cv::Mat::ones( cv::Size(disp_map.cols, disp_map.rows), CV_8UC1 );
|
---|
1699 | mask2 = cv::Mat::ones( cv::Size(disp_map.cols, disp_map.rows), CV_8UC1 );
|
---|
1700 | }
|
---|
1701 |
|
---|
1702 | int l, c, pixel, v_disp_pixel, u_disp_pixel; // local variables for row, column and pixel
|
---|
1703 | unsigned char intensity; // pixel intensity
|
---|
1704 | unsigned char intensity_B_v, intensity_G_v, intensity_R_v; //pixel intensity
|
---|
1705 | unsigned char intensity_B_u, intensity_G_u, intensity_R_u; //pixel intensity
|
---|
1706 |
|
---|
1707 | /*uint8_t* pixelPtr_mask1 = (uint8_t*)mask1.data;
|
---|
1708 | uint8_t* pixelPtr_mask2 = (uint8_t*)mask2.data;
|
---|
1709 | uint8_t* pixelPtr_disp_map = (uint8_t*)disp_map.data;
|
---|
1710 | uint8_t* pixelPtr_v_disp1 = (uint8_t*)v_disp_1.data;
|
---|
1711 | uint8_t* pixelPtr_v_disp2 = (uint8_t*)v_disp_2.data;*/
|
---|
1712 |
|
---|
1713 | // run the images associating the red pixels in the v-disparities in the mask1 e mask2
|
---|
1714 | for (l = 0; l < disp_map.rows; ++l)
|
---|
1715 | {
|
---|
1716 | for (c = 0; c < disp_map.cols; ++c)
|
---|
1717 | {
|
---|
1718 | pixel = l*disp_map.cols + c;
|
---|
1719 |
|
---|
1720 | intensity = (unsigned char)disp_map.data[pixel];
|
---|
1721 |
|
---|
1722 | //--------- Marca os planos trafegaveis --------------------
|
---|
1723 | // Pixel Azul
|
---|
1724 | v_disp_pixel = l*v_disp_1.cols*3 + intensity*3;
|
---|
1725 | intensity_B_v = (unsigned char)v_disp_1.data[v_disp_pixel];
|
---|
1726 |
|
---|
1727 | // Pixel Verde
|
---|
1728 | v_disp_pixel = l*v_disp_1.cols*3 + intensity*3 + 1;
|
---|
1729 | intensity_G_v = (unsigned char)v_disp_1.data[v_disp_pixel];
|
---|
1730 |
|
---|
1731 | // Pixel Vermelho
|
---|
1732 | v_disp_pixel = l*v_disp_1.cols*3 + intensity*3 + 2;
|
---|
1733 | intensity_R_v = (unsigned char)v_disp_1.data[v_disp_pixel];
|
---|
1734 |
|
---|
1735 | if((intensity_B_v == 0)&&(intensity_G_v == 0)&&(intensity_R_v == 255))
|
---|
1736 | {
|
---|
1737 | mask1.data[pixel] = value;
|
---|
1738 | }
|
---|
1739 | //----------------------------------------------------------
|
---|
1740 |
|
---|
1741 | //--------- Marca os obstaculos ----------------------------
|
---|
1742 | if( (intensity >= min_d)&&(intensity <= max_d))
|
---|
1743 | {
|
---|
1744 | // Pixel Azul
|
---|
1745 | v_disp_pixel = l*v_disp_2.cols*3 + intensity*3;
|
---|
1746 | u_disp_pixel = intensity*u_disp.cols*3 + c*3;
|
---|
1747 | intensity_B_v = (unsigned char)v_disp_2.data[v_disp_pixel];
|
---|
1748 | intensity_B_u = (unsigned char)u_disp.data[u_disp_pixel];
|
---|
1749 |
|
---|
1750 | // Pixel Verde
|
---|
1751 | v_disp_pixel = l*v_disp_2.cols*3 + intensity*3 + 1;
|
---|
1752 | u_disp_pixel = intensity*u_disp.cols*3 + c*3 + 1;
|
---|
1753 | intensity_G_v = (unsigned char)v_disp_2.data[v_disp_pixel];
|
---|
1754 | intensity_G_u = (unsigned char)u_disp.data[u_disp_pixel];
|
---|
1755 |
|
---|
1756 | // Pixel Vermelho
|
---|
1757 | v_disp_pixel = l*v_disp_2.cols*3 + intensity*3 + 2;
|
---|
1758 | u_disp_pixel = intensity*u_disp.cols*3 + c*3 + 2;
|
---|
1759 | intensity_R_v = (unsigned char)v_disp_2.data[v_disp_pixel];
|
---|
1760 | intensity_R_u = (unsigned char)u_disp.data[u_disp_pixel];
|
---|
1761 |
|
---|
1762 | if((intensity_B_v == 0)&&(intensity_G_v == 0)&&(intensity_R_v == 255)&&(intensity_B_u == 0)&&(intensity_G_u == 0)&&(intensity_R_u == 255))
|
---|
1763 | {
|
---|
1764 | mask2.data[pixel] = value;
|
---|
1765 | }
|
---|
1766 | }
|
---|
1767 | //----------------------------------------------------------
|
---|
1768 | }
|
---|
1769 | }
|
---|
1770 |
|
---|
1771 | /*cv::Mat element = cv::getStructuringElement( cv::MORPH_RECT,
|
---|
1772 | cv::Size( 3, 3 ),
|
---|
1773 | cv::Point( 1, 1 ) );*/
|
---|
1774 |
|
---|
1775 | // Espande as regioes brancas da imagem
|
---|
1776 | if(value == 1)
|
---|
1777 | {
|
---|
1778 | //cv::dilate(mask1, mask1, element, cv::Point(1,1), 2);
|
---|
1779 | //cv::dilate(mask2, mask2, element, cv::Point(1,1), 2);
|
---|
1780 |
|
---|
1781 | cv::dilate(mask1, mask1, cv::Mat(), cv::Point(-1,-1), 2 );
|
---|
1782 | cv::dilate(mask2, mask2, cv::Mat(), cv::Point(-1,-1), 2 );
|
---|
1783 | }
|
---|
1784 | else
|
---|
1785 | {
|
---|
1786 | //cv::erode(mask1, mask1, element, cv::Point(1,1), 2);
|
---|
1787 | //cv::erode(mask2, mask2, element, cv::Point(1,1), 2);
|
---|
1788 |
|
---|
1789 | cv::erode(mask1,mask1,NULL, cv::Point(-1,-1), 2);
|
---|
1790 | cv::erode(mask2,mask2,NULL, cv::Point(-1,-1), 2);
|
---|
1791 | }
|
---|
1792 |
|
---|
1793 | //cvNamedWindow("Imagem da mascara1",CV_WINDOW_AUTOSIZE);
|
---|
1794 | //cvShowImage("Imagem da mascara1", mask1);
|
---|
1795 |
|
---|
1796 | //cvNamedWindow("Imagem da mascara2",CV_WINDOW_AUTOSIZE);
|
---|
1797 | //cvShowImage("Imagem da mascara2", mask2);
|
---|
1798 |
|
---|
1799 | return std::make_pair(mask1, mask2);
|
---|
1800 | } |
---|