1 |
|
---|
2 | // g++ -DNDEBUG -O3 -I.. benchEigenSolver.cpp -o benchEigenSolver && ./benchEigenSolver
|
---|
3 | // options:
|
---|
4 | // -DBENCH_GMM
|
---|
5 | // -DBENCH_GSL -lgsl /usr/lib/libcblas.so.3
|
---|
6 | // -DEIGEN_DONT_VECTORIZE
|
---|
7 | // -msse2
|
---|
8 | // -DREPEAT=100
|
---|
9 | // -DTRIES=10
|
---|
10 | // -DSCALAR=double
|
---|
11 |
|
---|
12 | #include <iostream>
|
---|
13 |
|
---|
14 | #include <Eigen/Core>
|
---|
15 | #include <Eigen/QR>
|
---|
16 | #include <bench/BenchUtil.h>
|
---|
17 | using namespace Eigen;
|
---|
18 |
|
---|
19 | #ifndef REPEAT
|
---|
20 | #define REPEAT 1000
|
---|
21 | #endif
|
---|
22 |
|
---|
23 | #ifndef TRIES
|
---|
24 | #define TRIES 4
|
---|
25 | #endif
|
---|
26 |
|
---|
27 | #ifndef SCALAR
|
---|
28 | #define SCALAR float
|
---|
29 | #endif
|
---|
30 |
|
---|
31 | typedef SCALAR Scalar;
|
---|
32 |
|
---|
33 | template <typename MatrixType>
|
---|
34 | __attribute__ ((noinline)) void benchEigenSolver(const MatrixType& m)
|
---|
35 | {
|
---|
36 | int rows = m.rows();
|
---|
37 | int cols = m.cols();
|
---|
38 |
|
---|
39 | int stdRepeats = std::max(1,int((REPEAT*1000)/(rows*rows*sqrt(rows))));
|
---|
40 | int saRepeats = stdRepeats * 4;
|
---|
41 |
|
---|
42 | typedef typename MatrixType::Scalar Scalar;
|
---|
43 | typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, MatrixType::RowsAtCompileTime> SquareMatrixType;
|
---|
44 |
|
---|
45 | MatrixType a = MatrixType::Random(rows,cols);
|
---|
46 | SquareMatrixType covMat = a * a.adjoint();
|
---|
47 |
|
---|
48 | BenchTimer timerSa, timerStd;
|
---|
49 |
|
---|
50 | Scalar acc = 0;
|
---|
51 | int r = internal::random<int>(0,covMat.rows()-1);
|
---|
52 | int c = internal::random<int>(0,covMat.cols()-1);
|
---|
53 | {
|
---|
54 | SelfAdjointEigenSolver<SquareMatrixType> ei(covMat);
|
---|
55 | for (int t=0; t<TRIES; ++t)
|
---|
56 | {
|
---|
57 | timerSa.start();
|
---|
58 | for (int k=0; k<saRepeats; ++k)
|
---|
59 | {
|
---|
60 | ei.compute(covMat);
|
---|
61 | acc += ei.eigenvectors().coeff(r,c);
|
---|
62 | }
|
---|
63 | timerSa.stop();
|
---|
64 | }
|
---|
65 | }
|
---|
66 |
|
---|
67 | {
|
---|
68 | EigenSolver<SquareMatrixType> ei(covMat);
|
---|
69 | for (int t=0; t<TRIES; ++t)
|
---|
70 | {
|
---|
71 | timerStd.start();
|
---|
72 | for (int k=0; k<stdRepeats; ++k)
|
---|
73 | {
|
---|
74 | ei.compute(covMat);
|
---|
75 | acc += ei.eigenvectors().coeff(r,c);
|
---|
76 | }
|
---|
77 | timerStd.stop();
|
---|
78 | }
|
---|
79 | }
|
---|
80 |
|
---|
81 | if (MatrixType::RowsAtCompileTime==Dynamic)
|
---|
82 | std::cout << "dyn ";
|
---|
83 | else
|
---|
84 | std::cout << "fixed ";
|
---|
85 | std::cout << covMat.rows() << " \t"
|
---|
86 | << timerSa.value() * REPEAT / saRepeats << "s \t"
|
---|
87 | << timerStd.value() * REPEAT / stdRepeats << "s";
|
---|
88 |
|
---|
89 | #ifdef BENCH_GMM
|
---|
90 | if (MatrixType::RowsAtCompileTime==Dynamic)
|
---|
91 | {
|
---|
92 | timerSa.reset();
|
---|
93 | timerStd.reset();
|
---|
94 |
|
---|
95 | gmm::dense_matrix<Scalar> gmmCovMat(covMat.rows(),covMat.cols());
|
---|
96 | gmm::dense_matrix<Scalar> eigvect(covMat.rows(),covMat.cols());
|
---|
97 | std::vector<Scalar> eigval(covMat.rows());
|
---|
98 | eiToGmm(covMat, gmmCovMat);
|
---|
99 | for (int t=0; t<TRIES; ++t)
|
---|
100 | {
|
---|
101 | timerSa.start();
|
---|
102 | for (int k=0; k<saRepeats; ++k)
|
---|
103 | {
|
---|
104 | gmm::symmetric_qr_algorithm(gmmCovMat, eigval, eigvect);
|
---|
105 | acc += eigvect(r,c);
|
---|
106 | }
|
---|
107 | timerSa.stop();
|
---|
108 | }
|
---|
109 | // the non-selfadjoint solver does not compute the eigen vectors
|
---|
110 | // for (int t=0; t<TRIES; ++t)
|
---|
111 | // {
|
---|
112 | // timerStd.start();
|
---|
113 | // for (int k=0; k<stdRepeats; ++k)
|
---|
114 | // {
|
---|
115 | // gmm::implicit_qr_algorithm(gmmCovMat, eigval, eigvect);
|
---|
116 | // acc += eigvect(r,c);
|
---|
117 | // }
|
---|
118 | // timerStd.stop();
|
---|
119 | // }
|
---|
120 |
|
---|
121 | std::cout << " | \t"
|
---|
122 | << timerSa.value() * REPEAT / saRepeats << "s"
|
---|
123 | << /*timerStd.value() * REPEAT / stdRepeats << "s"*/ " na ";
|
---|
124 | }
|
---|
125 | #endif
|
---|
126 |
|
---|
127 | #ifdef BENCH_GSL
|
---|
128 | if (MatrixType::RowsAtCompileTime==Dynamic)
|
---|
129 | {
|
---|
130 | timerSa.reset();
|
---|
131 | timerStd.reset();
|
---|
132 |
|
---|
133 | gsl_matrix* gslCovMat = gsl_matrix_alloc(covMat.rows(),covMat.cols());
|
---|
134 | gsl_matrix* gslCopy = gsl_matrix_alloc(covMat.rows(),covMat.cols());
|
---|
135 | gsl_matrix* eigvect = gsl_matrix_alloc(covMat.rows(),covMat.cols());
|
---|
136 | gsl_vector* eigval = gsl_vector_alloc(covMat.rows());
|
---|
137 | gsl_eigen_symmv_workspace* eisymm = gsl_eigen_symmv_alloc(covMat.rows());
|
---|
138 |
|
---|
139 | gsl_matrix_complex* eigvectz = gsl_matrix_complex_alloc(covMat.rows(),covMat.cols());
|
---|
140 | gsl_vector_complex* eigvalz = gsl_vector_complex_alloc(covMat.rows());
|
---|
141 | gsl_eigen_nonsymmv_workspace* einonsymm = gsl_eigen_nonsymmv_alloc(covMat.rows());
|
---|
142 |
|
---|
143 | eiToGsl(covMat, &gslCovMat);
|
---|
144 | for (int t=0; t<TRIES; ++t)
|
---|
145 | {
|
---|
146 | timerSa.start();
|
---|
147 | for (int k=0; k<saRepeats; ++k)
|
---|
148 | {
|
---|
149 | gsl_matrix_memcpy(gslCopy,gslCovMat);
|
---|
150 | gsl_eigen_symmv(gslCopy, eigval, eigvect, eisymm);
|
---|
151 | acc += gsl_matrix_get(eigvect,r,c);
|
---|
152 | }
|
---|
153 | timerSa.stop();
|
---|
154 | }
|
---|
155 | for (int t=0; t<TRIES; ++t)
|
---|
156 | {
|
---|
157 | timerStd.start();
|
---|
158 | for (int k=0; k<stdRepeats; ++k)
|
---|
159 | {
|
---|
160 | gsl_matrix_memcpy(gslCopy,gslCovMat);
|
---|
161 | gsl_eigen_nonsymmv(gslCopy, eigvalz, eigvectz, einonsymm);
|
---|
162 | acc += GSL_REAL(gsl_matrix_complex_get(eigvectz,r,c));
|
---|
163 | }
|
---|
164 | timerStd.stop();
|
---|
165 | }
|
---|
166 |
|
---|
167 | std::cout << " | \t"
|
---|
168 | << timerSa.value() * REPEAT / saRepeats << "s \t"
|
---|
169 | << timerStd.value() * REPEAT / stdRepeats << "s";
|
---|
170 |
|
---|
171 | gsl_matrix_free(gslCovMat);
|
---|
172 | gsl_vector_free(gslCopy);
|
---|
173 | gsl_matrix_free(eigvect);
|
---|
174 | gsl_vector_free(eigval);
|
---|
175 | gsl_matrix_complex_free(eigvectz);
|
---|
176 | gsl_vector_complex_free(eigvalz);
|
---|
177 | gsl_eigen_symmv_free(eisymm);
|
---|
178 | gsl_eigen_nonsymmv_free(einonsymm);
|
---|
179 | }
|
---|
180 | #endif
|
---|
181 |
|
---|
182 | std::cout << "\n";
|
---|
183 |
|
---|
184 | // make sure the compiler does not optimize too much
|
---|
185 | if (acc==123)
|
---|
186 | std::cout << acc;
|
---|
187 | }
|
---|
188 |
|
---|
189 | int main(int argc, char* argv[])
|
---|
190 | {
|
---|
191 | const int dynsizes[] = {4,6,8,12,16,24,32,64,128,256,512,0};
|
---|
192 | std::cout << "size selfadjoint generic";
|
---|
193 | #ifdef BENCH_GMM
|
---|
194 | std::cout << " GMM++ ";
|
---|
195 | #endif
|
---|
196 | #ifdef BENCH_GSL
|
---|
197 | std::cout << " GSL (double + ATLAS) ";
|
---|
198 | #endif
|
---|
199 | std::cout << "\n";
|
---|
200 | for (uint i=0; dynsizes[i]>0; ++i)
|
---|
201 | benchEigenSolver(Matrix<Scalar,Dynamic,Dynamic>(dynsizes[i],dynsizes[i]));
|
---|
202 |
|
---|
203 | benchEigenSolver(Matrix<Scalar,2,2>());
|
---|
204 | benchEigenSolver(Matrix<Scalar,3,3>());
|
---|
205 | benchEigenSolver(Matrix<Scalar,4,4>());
|
---|
206 | benchEigenSolver(Matrix<Scalar,6,6>());
|
---|
207 | benchEigenSolver(Matrix<Scalar,8,8>());
|
---|
208 | benchEigenSolver(Matrix<Scalar,12,12>());
|
---|
209 | benchEigenSolver(Matrix<Scalar,16,16>());
|
---|
210 | return 0;
|
---|
211 | }
|
---|
212 |
|
---|