1 | // This file is part of Eigen, a lightweight C++ template library
|
---|
2 | // for linear algebra.
|
---|
3 | //
|
---|
4 | // Copyright (C) 2010 Gael Guennebaud <gael.guennebaud@inria.fr>
|
---|
5 | //
|
---|
6 | // This Source Code Form is subject to the terms of the Mozilla
|
---|
7 | // Public License v. 2.0. If a copy of the MPL was not distributed
|
---|
8 | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
---|
9 |
|
---|
10 | // The computeRoots function included in this is based on materials
|
---|
11 | // covered by the following copyright and license:
|
---|
12 | //
|
---|
13 | // Geometric Tools, LLC
|
---|
14 | // Copyright (c) 1998-2010
|
---|
15 | // Distributed under the Boost Software License, Version 1.0.
|
---|
16 | //
|
---|
17 | // Permission is hereby granted, free of charge, to any person or organization
|
---|
18 | // obtaining a copy of the software and accompanying documentation covered by
|
---|
19 | // this license (the "Software") to use, reproduce, display, distribute,
|
---|
20 | // execute, and transmit the Software, and to prepare derivative works of the
|
---|
21 | // Software, and to permit third-parties to whom the Software is furnished to
|
---|
22 | // do so, all subject to the following:
|
---|
23 | //
|
---|
24 | // The copyright notices in the Software and this entire statement, including
|
---|
25 | // the above license grant, this restriction and the following disclaimer,
|
---|
26 | // must be included in all copies of the Software, in whole or in part, and
|
---|
27 | // all derivative works of the Software, unless such copies or derivative
|
---|
28 | // works are solely in the form of machine-executable object code generated by
|
---|
29 | // a source language processor.
|
---|
30 | //
|
---|
31 | // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
---|
32 | // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
---|
33 | // FITNESS FOR A PARTICULAR PURPOSE, TITLE AND NON-INFRINGEMENT. IN NO EVENT
|
---|
34 | // SHALL THE COPYRIGHT HOLDERS OR ANYONE DISTRIBUTING THE SOFTWARE BE LIABLE
|
---|
35 | // FOR ANY DAMAGES OR OTHER LIABILITY, WHETHER IN CONTRACT, TORT OR OTHERWISE,
|
---|
36 | // ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
|
---|
37 | // DEALINGS IN THE SOFTWARE.
|
---|
38 |
|
---|
39 | #include <iostream>
|
---|
40 | #include <Eigen/Core>
|
---|
41 | #include <Eigen/Eigenvalues>
|
---|
42 | #include <Eigen/Geometry>
|
---|
43 | #include <bench/BenchTimer.h>
|
---|
44 |
|
---|
45 | using namespace Eigen;
|
---|
46 | using namespace std;
|
---|
47 |
|
---|
48 | template<typename Matrix, typename Roots>
|
---|
49 | inline void computeRoots(const Matrix& m, Roots& roots)
|
---|
50 | {
|
---|
51 | typedef typename Matrix::Scalar Scalar;
|
---|
52 | const Scalar s_inv3 = 1.0/3.0;
|
---|
53 | const Scalar s_sqrt3 = internal::sqrt(Scalar(3.0));
|
---|
54 |
|
---|
55 | // The characteristic equation is x^3 - c2*x^2 + c1*x - c0 = 0. The
|
---|
56 | // eigenvalues are the roots to this equation, all guaranteed to be
|
---|
57 | // real-valued, because the matrix is symmetric.
|
---|
58 | Scalar c0 = m(0,0)*m(1,1)*m(2,2) + Scalar(2)*m(0,1)*m(0,2)*m(1,2) - m(0,0)*m(1,2)*m(1,2) - m(1,1)*m(0,2)*m(0,2) - m(2,2)*m(0,1)*m(0,1);
|
---|
59 | Scalar c1 = m(0,0)*m(1,1) - m(0,1)*m(0,1) + m(0,0)*m(2,2) - m(0,2)*m(0,2) + m(1,1)*m(2,2) - m(1,2)*m(1,2);
|
---|
60 | Scalar c2 = m(0,0) + m(1,1) + m(2,2);
|
---|
61 |
|
---|
62 | // Construct the parameters used in classifying the roots of the equation
|
---|
63 | // and in solving the equation for the roots in closed form.
|
---|
64 | Scalar c2_over_3 = c2*s_inv3;
|
---|
65 | Scalar a_over_3 = (c1 - c2*c2_over_3)*s_inv3;
|
---|
66 | if (a_over_3 > Scalar(0))
|
---|
67 | a_over_3 = Scalar(0);
|
---|
68 |
|
---|
69 | Scalar half_b = Scalar(0.5)*(c0 + c2_over_3*(Scalar(2)*c2_over_3*c2_over_3 - c1));
|
---|
70 |
|
---|
71 | Scalar q = half_b*half_b + a_over_3*a_over_3*a_over_3;
|
---|
72 | if (q > Scalar(0))
|
---|
73 | q = Scalar(0);
|
---|
74 |
|
---|
75 | // Compute the eigenvalues by solving for the roots of the polynomial.
|
---|
76 | Scalar rho = internal::sqrt(-a_over_3);
|
---|
77 | Scalar theta = std::atan2(internal::sqrt(-q),half_b)*s_inv3;
|
---|
78 | Scalar cos_theta = internal::cos(theta);
|
---|
79 | Scalar sin_theta = internal::sin(theta);
|
---|
80 | roots(0) = c2_over_3 + Scalar(2)*rho*cos_theta;
|
---|
81 | roots(1) = c2_over_3 - rho*(cos_theta + s_sqrt3*sin_theta);
|
---|
82 | roots(2) = c2_over_3 - rho*(cos_theta - s_sqrt3*sin_theta);
|
---|
83 |
|
---|
84 | // Sort in increasing order.
|
---|
85 | if (roots(0) >= roots(1))
|
---|
86 | std::swap(roots(0),roots(1));
|
---|
87 | if (roots(1) >= roots(2))
|
---|
88 | {
|
---|
89 | std::swap(roots(1),roots(2));
|
---|
90 | if (roots(0) >= roots(1))
|
---|
91 | std::swap(roots(0),roots(1));
|
---|
92 | }
|
---|
93 | }
|
---|
94 |
|
---|
95 | template<typename Matrix, typename Vector>
|
---|
96 | void eigen33(const Matrix& mat, Matrix& evecs, Vector& evals)
|
---|
97 | {
|
---|
98 | typedef typename Matrix::Scalar Scalar;
|
---|
99 | // Scale the matrix so its entries are in [-1,1]. The scaling is applied
|
---|
100 | // only when at least one matrix entry has magnitude larger than 1.
|
---|
101 |
|
---|
102 | Scalar scale = mat.cwiseAbs()/*.template triangularView<Lower>()*/.maxCoeff();
|
---|
103 | scale = std::max(scale,Scalar(1));
|
---|
104 | Matrix scaledMat = mat / scale;
|
---|
105 |
|
---|
106 | // Compute the eigenvalues
|
---|
107 | // scaledMat.setZero();
|
---|
108 | computeRoots(scaledMat,evals);
|
---|
109 |
|
---|
110 | // compute the eigen vectors
|
---|
111 | // **here we assume 3 differents eigenvalues**
|
---|
112 |
|
---|
113 | // "optimized version" which appears to be slower with gcc!
|
---|
114 | // Vector base;
|
---|
115 | // Scalar alpha, beta;
|
---|
116 | // base << scaledMat(1,0) * scaledMat(2,1),
|
---|
117 | // scaledMat(1,0) * scaledMat(2,0),
|
---|
118 | // -scaledMat(1,0) * scaledMat(1,0);
|
---|
119 | // for(int k=0; k<2; ++k)
|
---|
120 | // {
|
---|
121 | // alpha = scaledMat(0,0) - evals(k);
|
---|
122 | // beta = scaledMat(1,1) - evals(k);
|
---|
123 | // evecs.col(k) = (base + Vector(-beta*scaledMat(2,0), -alpha*scaledMat(2,1), alpha*beta)).normalized();
|
---|
124 | // }
|
---|
125 | // evecs.col(2) = evecs.col(0).cross(evecs.col(1)).normalized();
|
---|
126 |
|
---|
127 | // // naive version
|
---|
128 | // Matrix tmp;
|
---|
129 | // tmp = scaledMat;
|
---|
130 | // tmp.diagonal().array() -= evals(0);
|
---|
131 | // evecs.col(0) = tmp.row(0).cross(tmp.row(1)).normalized();
|
---|
132 | //
|
---|
133 | // tmp = scaledMat;
|
---|
134 | // tmp.diagonal().array() -= evals(1);
|
---|
135 | // evecs.col(1) = tmp.row(0).cross(tmp.row(1)).normalized();
|
---|
136 | //
|
---|
137 | // tmp = scaledMat;
|
---|
138 | // tmp.diagonal().array() -= evals(2);
|
---|
139 | // evecs.col(2) = tmp.row(0).cross(tmp.row(1)).normalized();
|
---|
140 |
|
---|
141 | // a more stable version:
|
---|
142 | if((evals(2)-evals(0))<=Eigen::NumTraits<Scalar>::epsilon())
|
---|
143 | {
|
---|
144 | evecs.setIdentity();
|
---|
145 | }
|
---|
146 | else
|
---|
147 | {
|
---|
148 | Matrix tmp;
|
---|
149 | tmp = scaledMat;
|
---|
150 | tmp.diagonal ().array () -= evals (2);
|
---|
151 | evecs.col (2) = tmp.row (0).cross (tmp.row (1)).normalized ();
|
---|
152 |
|
---|
153 | tmp = scaledMat;
|
---|
154 | tmp.diagonal ().array () -= evals (1);
|
---|
155 | evecs.col(1) = tmp.row (0).cross(tmp.row (1));
|
---|
156 | Scalar n1 = evecs.col(1).norm();
|
---|
157 | if(n1<=Eigen::NumTraits<Scalar>::epsilon())
|
---|
158 | evecs.col(1) = evecs.col(2).unitOrthogonal();
|
---|
159 | else
|
---|
160 | evecs.col(1) /= n1;
|
---|
161 |
|
---|
162 | // make sure that evecs[1] is orthogonal to evecs[2]
|
---|
163 | evecs.col(1) = evecs.col(2).cross(evecs.col(1).cross(evecs.col(2))).normalized();
|
---|
164 | evecs.col(0) = evecs.col(2).cross(evecs.col(1));
|
---|
165 | }
|
---|
166 |
|
---|
167 | // Rescale back to the original size.
|
---|
168 | evals *= scale;
|
---|
169 | }
|
---|
170 |
|
---|
171 | int main()
|
---|
172 | {
|
---|
173 | BenchTimer t;
|
---|
174 | int tries = 10;
|
---|
175 | int rep = 400000;
|
---|
176 | typedef Matrix3f Mat;
|
---|
177 | typedef Vector3f Vec;
|
---|
178 | Mat A = Mat::Random(3,3);
|
---|
179 | A = A.adjoint() * A;
|
---|
180 |
|
---|
181 | SelfAdjointEigenSolver<Mat> eig(A);
|
---|
182 | BENCH(t, tries, rep, eig.compute(A));
|
---|
183 | std::cout << "Eigen: " << t.best() << "s\n";
|
---|
184 |
|
---|
185 | Mat evecs;
|
---|
186 | Vec evals;
|
---|
187 | BENCH(t, tries, rep, eigen33(A,evecs,evals));
|
---|
188 | std::cout << "Direct: " << t.best() << "s\n\n";
|
---|
189 |
|
---|
190 | std::cerr << "Eigenvalue/eigenvector diffs:\n";
|
---|
191 | std::cerr << (evals - eig.eigenvalues()).transpose() << "\n";
|
---|
192 | for(int k=0;k<3;++k)
|
---|
193 | if(evecs.col(k).dot(eig.eigenvectors().col(k))<0)
|
---|
194 | evecs.col(k) = -evecs.col(k);
|
---|
195 | std::cerr << evecs - eig.eigenvectors() << "\n\n";
|
---|
196 | }
|
---|