1 | // #define EIGEN_TAUCS_SUPPORT
|
---|
2 | // #define EIGEN_CHOLMOD_SUPPORT
|
---|
3 | #include <iostream>
|
---|
4 | #include <Eigen/Sparse>
|
---|
5 |
|
---|
6 | // g++ -DSIZE=10000 -DDENSITY=0.001 sparse_cholesky.cpp -I.. -DDENSEMATRI -O3 -g0 -DNDEBUG -DNBTRIES=1 -I /home/gael/Coding/LinearAlgebra/taucs_full/src/ -I/home/gael/Coding/LinearAlgebra/taucs_full/build/linux/ -L/home/gael/Coding/LinearAlgebra/taucs_full/lib/linux/ -ltaucs /home/gael/Coding/LinearAlgebra/GotoBLAS/libgoto.a -lpthread -I /home/gael/Coding/LinearAlgebra/SuiteSparse/CHOLMOD/Include/ $CHOLLIB -I /home/gael/Coding/LinearAlgebra/SuiteSparse/UFconfig/ /home/gael/Coding/LinearAlgebra/SuiteSparse/CCOLAMD/Lib/libccolamd.a /home/gael/Coding/LinearAlgebra/SuiteSparse/CHOLMOD/Lib/libcholmod.a -lmetis /home/gael/Coding/LinearAlgebra/SuiteSparse/AMD/Lib/libamd.a /home/gael/Coding/LinearAlgebra/SuiteSparse/CAMD/Lib/libcamd.a /home/gael/Coding/LinearAlgebra/SuiteSparse/CCOLAMD/Lib/libccolamd.a /home/gael/Coding/LinearAlgebra/SuiteSparse/COLAMD/Lib/libcolamd.a -llapack && ./a.out
|
---|
7 |
|
---|
8 | #define NOGMM
|
---|
9 | #define NOMTL
|
---|
10 |
|
---|
11 | #ifndef SIZE
|
---|
12 | #define SIZE 10
|
---|
13 | #endif
|
---|
14 |
|
---|
15 | #ifndef DENSITY
|
---|
16 | #define DENSITY 0.01
|
---|
17 | #endif
|
---|
18 |
|
---|
19 | #ifndef REPEAT
|
---|
20 | #define REPEAT 1
|
---|
21 | #endif
|
---|
22 |
|
---|
23 | #include "BenchSparseUtil.h"
|
---|
24 |
|
---|
25 | #ifndef MINDENSITY
|
---|
26 | #define MINDENSITY 0.0004
|
---|
27 | #endif
|
---|
28 |
|
---|
29 | #ifndef NBTRIES
|
---|
30 | #define NBTRIES 10
|
---|
31 | #endif
|
---|
32 |
|
---|
33 | #define BENCH(X) \
|
---|
34 | timer.reset(); \
|
---|
35 | for (int _j=0; _j<NBTRIES; ++_j) { \
|
---|
36 | timer.start(); \
|
---|
37 | for (int _k=0; _k<REPEAT; ++_k) { \
|
---|
38 | X \
|
---|
39 | } timer.stop(); }
|
---|
40 |
|
---|
41 | // typedef SparseMatrix<Scalar,UpperTriangular> EigenSparseTriMatrix;
|
---|
42 | typedef SparseMatrix<Scalar,SelfAdjoint|LowerTriangular> EigenSparseSelfAdjointMatrix;
|
---|
43 |
|
---|
44 | void fillSpdMatrix(float density, int rows, int cols, EigenSparseSelfAdjointMatrix& dst)
|
---|
45 | {
|
---|
46 | dst.startFill(rows*cols*density);
|
---|
47 | for(int j = 0; j < cols; j++)
|
---|
48 | {
|
---|
49 | dst.fill(j,j) = internal::random<Scalar>(10,20);
|
---|
50 | for(int i = j+1; i < rows; i++)
|
---|
51 | {
|
---|
52 | Scalar v = (internal::random<float>(0,1) < density) ? internal::random<Scalar>() : 0;
|
---|
53 | if (v!=0)
|
---|
54 | dst.fill(i,j) = v;
|
---|
55 | }
|
---|
56 |
|
---|
57 | }
|
---|
58 | dst.endFill();
|
---|
59 | }
|
---|
60 |
|
---|
61 | #include <Eigen/Cholesky>
|
---|
62 |
|
---|
63 | template<int Backend>
|
---|
64 | void doEigen(const char* name, const EigenSparseSelfAdjointMatrix& sm1, int flags = 0)
|
---|
65 | {
|
---|
66 | std::cout << name << "..." << std::flush;
|
---|
67 | BenchTimer timer;
|
---|
68 | timer.start();
|
---|
69 | SparseLLT<EigenSparseSelfAdjointMatrix,Backend> chol(sm1, flags);
|
---|
70 | timer.stop();
|
---|
71 | std::cout << ":\t" << timer.value() << endl;
|
---|
72 |
|
---|
73 | std::cout << " nnz: " << sm1.nonZeros() << " => " << chol.matrixL().nonZeros() << "\n";
|
---|
74 | // std::cout << "sparse\n" << chol.matrixL() << "%\n";
|
---|
75 | }
|
---|
76 |
|
---|
77 | int main(int argc, char *argv[])
|
---|
78 | {
|
---|
79 | int rows = SIZE;
|
---|
80 | int cols = SIZE;
|
---|
81 | float density = DENSITY;
|
---|
82 | BenchTimer timer;
|
---|
83 |
|
---|
84 | VectorXf b = VectorXf::Random(cols);
|
---|
85 | VectorXf x = VectorXf::Random(cols);
|
---|
86 |
|
---|
87 | bool densedone = false;
|
---|
88 |
|
---|
89 | //for (float density = DENSITY; density>=MINDENSITY; density*=0.5)
|
---|
90 | // float density = 0.5;
|
---|
91 | {
|
---|
92 | EigenSparseSelfAdjointMatrix sm1(rows, cols);
|
---|
93 | std::cout << "Generate sparse matrix (might take a while)...\n";
|
---|
94 | fillSpdMatrix(density, rows, cols, sm1);
|
---|
95 | std::cout << "DONE\n\n";
|
---|
96 |
|
---|
97 | // dense matrices
|
---|
98 | #ifdef DENSEMATRIX
|
---|
99 | if (!densedone)
|
---|
100 | {
|
---|
101 | densedone = true;
|
---|
102 | std::cout << "Eigen Dense\t" << density*100 << "%\n";
|
---|
103 | DenseMatrix m1(rows,cols);
|
---|
104 | eiToDense(sm1, m1);
|
---|
105 | m1 = (m1 + m1.transpose()).eval();
|
---|
106 | m1.diagonal() *= 0.5;
|
---|
107 |
|
---|
108 | // BENCH(LLT<DenseMatrix> chol(m1);)
|
---|
109 | // std::cout << "dense:\t" << timer.value() << endl;
|
---|
110 |
|
---|
111 | BenchTimer timer;
|
---|
112 | timer.start();
|
---|
113 | LLT<DenseMatrix> chol(m1);
|
---|
114 | timer.stop();
|
---|
115 | std::cout << "dense:\t" << timer.value() << endl;
|
---|
116 | int count = 0;
|
---|
117 | for (int j=0; j<cols; ++j)
|
---|
118 | for (int i=j; i<rows; ++i)
|
---|
119 | if (!internal::isMuchSmallerThan(internal::abs(chol.matrixL()(i,j)), 0.1))
|
---|
120 | count++;
|
---|
121 | std::cout << "dense: " << "nnz = " << count << "\n";
|
---|
122 | // std::cout << "dense:\n" << m1 << "\n\n" << chol.matrixL() << endl;
|
---|
123 | }
|
---|
124 | #endif
|
---|
125 |
|
---|
126 | // eigen sparse matrices
|
---|
127 | doEigen<Eigen::DefaultBackend>("Eigen/Sparse", sm1, Eigen::IncompleteFactorization);
|
---|
128 |
|
---|
129 | #ifdef EIGEN_CHOLMOD_SUPPORT
|
---|
130 | doEigen<Eigen::Cholmod>("Eigen/Cholmod", sm1, Eigen::IncompleteFactorization);
|
---|
131 | #endif
|
---|
132 |
|
---|
133 | #ifdef EIGEN_TAUCS_SUPPORT
|
---|
134 | doEigen<Eigen::Taucs>("Eigen/Taucs", sm1, Eigen::IncompleteFactorization);
|
---|
135 | #endif
|
---|
136 |
|
---|
137 | #if 0
|
---|
138 | // TAUCS
|
---|
139 | {
|
---|
140 | taucs_ccs_matrix A = sm1.asTaucsMatrix();
|
---|
141 |
|
---|
142 | //BENCH(taucs_ccs_matrix* chol = taucs_ccs_factor_llt(&A, 0, 0);)
|
---|
143 | // BENCH(taucs_supernodal_factor_to_ccs(taucs_ccs_factor_llt_ll(&A));)
|
---|
144 | // std::cout << "taucs:\t" << timer.value() << endl;
|
---|
145 |
|
---|
146 | taucs_ccs_matrix* chol = taucs_ccs_factor_llt(&A, 0, 0);
|
---|
147 |
|
---|
148 | for (int j=0; j<cols; ++j)
|
---|
149 | {
|
---|
150 | for (int i=chol->colptr[j]; i<chol->colptr[j+1]; ++i)
|
---|
151 | std::cout << chol->values.d[i] << " ";
|
---|
152 | }
|
---|
153 | }
|
---|
154 |
|
---|
155 | // CHOLMOD
|
---|
156 | #ifdef EIGEN_CHOLMOD_SUPPORT
|
---|
157 | {
|
---|
158 | cholmod_common c;
|
---|
159 | cholmod_start (&c);
|
---|
160 | cholmod_sparse A;
|
---|
161 | cholmod_factor *L;
|
---|
162 |
|
---|
163 | A = sm1.asCholmodMatrix();
|
---|
164 | BenchTimer timer;
|
---|
165 | // timer.reset();
|
---|
166 | timer.start();
|
---|
167 | std::vector<int> perm(cols);
|
---|
168 | // std::vector<int> set(ncols);
|
---|
169 | for (int i=0; i<cols; ++i)
|
---|
170 | perm[i] = i;
|
---|
171 | // c.nmethods = 1;
|
---|
172 | // c.method[0] = 1;
|
---|
173 |
|
---|
174 | c.nmethods = 1;
|
---|
175 | c.method [0].ordering = CHOLMOD_NATURAL;
|
---|
176 | c.postorder = 0;
|
---|
177 | c.final_ll = 1;
|
---|
178 |
|
---|
179 | L = cholmod_analyze_p(&A, &perm[0], &perm[0], cols, &c);
|
---|
180 | timer.stop();
|
---|
181 | std::cout << "cholmod/analyze:\t" << timer.value() << endl;
|
---|
182 | timer.reset();
|
---|
183 | timer.start();
|
---|
184 | cholmod_factorize(&A, L, &c);
|
---|
185 | timer.stop();
|
---|
186 | std::cout << "cholmod/factorize:\t" << timer.value() << endl;
|
---|
187 |
|
---|
188 | cholmod_sparse* cholmat = cholmod_factor_to_sparse(L, &c);
|
---|
189 |
|
---|
190 | cholmod_print_factor(L, "Factors", &c);
|
---|
191 |
|
---|
192 | cholmod_print_sparse(cholmat, "Chol", &c);
|
---|
193 | cholmod_write_sparse(stdout, cholmat, 0, 0, &c);
|
---|
194 | //
|
---|
195 | // cholmod_print_sparse(&A, "A", &c);
|
---|
196 | // cholmod_write_sparse(stdout, &A, 0, 0, &c);
|
---|
197 |
|
---|
198 |
|
---|
199 | // for (int j=0; j<cols; ++j)
|
---|
200 | // {
|
---|
201 | // for (int i=chol->colptr[j]; i<chol->colptr[j+1]; ++i)
|
---|
202 | // std::cout << chol->values.s[i] << " ";
|
---|
203 | // }
|
---|
204 | }
|
---|
205 | #endif
|
---|
206 |
|
---|
207 | #endif
|
---|
208 |
|
---|
209 |
|
---|
210 |
|
---|
211 | }
|
---|
212 |
|
---|
213 |
|
---|
214 | return 0;
|
---|
215 | }
|
---|
216 |
|
---|