1 | // Small bench routine for Eigen available in Eigen
|
---|
2 | // (C) Desire NUENTSA WAKAM, INRIA
|
---|
3 |
|
---|
4 | #include <iostream>
|
---|
5 | #include <fstream>
|
---|
6 | #include <iomanip>
|
---|
7 | #include <unsupported/Eigen/SparseExtra>
|
---|
8 | #include <Eigen/SparseLU>
|
---|
9 | #include <bench/BenchTimer.h>
|
---|
10 | #ifdef EIGEN_METIS_SUPPORT
|
---|
11 | #include <Eigen/MetisSupport>
|
---|
12 | #endif
|
---|
13 |
|
---|
14 | using namespace std;
|
---|
15 | using namespace Eigen;
|
---|
16 |
|
---|
17 | int main(int argc, char **args)
|
---|
18 | {
|
---|
19 | // typedef complex<double> scalar;
|
---|
20 | typedef double scalar;
|
---|
21 | SparseMatrix<scalar, ColMajor> A;
|
---|
22 | typedef SparseMatrix<scalar, ColMajor>::Index Index;
|
---|
23 | typedef Matrix<scalar, Dynamic, Dynamic> DenseMatrix;
|
---|
24 | typedef Matrix<scalar, Dynamic, 1> DenseRhs;
|
---|
25 | Matrix<scalar, Dynamic, 1> b, x, tmp;
|
---|
26 | // SparseLU<SparseMatrix<scalar, ColMajor>, AMDOrdering<int> > solver;
|
---|
27 | // #ifdef EIGEN_METIS_SUPPORT
|
---|
28 | // SparseLU<SparseMatrix<scalar, ColMajor>, MetisOrdering<int> > solver;
|
---|
29 | // std::cout<< "ORDERING : METIS\n";
|
---|
30 | // #else
|
---|
31 | SparseLU<SparseMatrix<scalar, ColMajor>, COLAMDOrdering<int> > solver;
|
---|
32 | std::cout<< "ORDERING : COLAMD\n";
|
---|
33 | // #endif
|
---|
34 |
|
---|
35 | ifstream matrix_file;
|
---|
36 | string line;
|
---|
37 | int n;
|
---|
38 | BenchTimer timer;
|
---|
39 |
|
---|
40 | // Set parameters
|
---|
41 | /* Fill the matrix with sparse matrix stored in Matrix-Market coordinate column-oriented format */
|
---|
42 | if (argc < 2) assert(false && "please, give the matrix market file ");
|
---|
43 | loadMarket(A, args[1]);
|
---|
44 | cout << "End charging matrix " << endl;
|
---|
45 | bool iscomplex=false, isvector=false;
|
---|
46 | int sym;
|
---|
47 | getMarketHeader(args[1], sym, iscomplex, isvector);
|
---|
48 | // if (iscomplex) { cout<< " Not for complex matrices \n"; return -1; }
|
---|
49 | if (isvector) { cout << "The provided file is not a matrix file\n"; return -1;}
|
---|
50 | if (sym != 0) { // symmetric matrices, only the lower part is stored
|
---|
51 | SparseMatrix<scalar, ColMajor> temp;
|
---|
52 | temp = A;
|
---|
53 | A = temp.selfadjointView<Lower>();
|
---|
54 | }
|
---|
55 | n = A.cols();
|
---|
56 | /* Fill the right hand side */
|
---|
57 |
|
---|
58 | if (argc > 2)
|
---|
59 | loadMarketVector(b, args[2]);
|
---|
60 | else
|
---|
61 | {
|
---|
62 | b.resize(n);
|
---|
63 | tmp.resize(n);
|
---|
64 | // tmp.setRandom();
|
---|
65 | for (int i = 0; i < n; i++) tmp(i) = i;
|
---|
66 | b = A * tmp ;
|
---|
67 | }
|
---|
68 |
|
---|
69 | /* Compute the factorization */
|
---|
70 | // solver.isSymmetric(true);
|
---|
71 | timer.start();
|
---|
72 | // solver.compute(A);
|
---|
73 | solver.analyzePattern(A);
|
---|
74 | timer.stop();
|
---|
75 | cout << "Time to analyze " << timer.value() << std::endl;
|
---|
76 | timer.reset();
|
---|
77 | timer.start();
|
---|
78 | solver.factorize(A);
|
---|
79 | timer.stop();
|
---|
80 | cout << "Factorize Time " << timer.value() << std::endl;
|
---|
81 | timer.reset();
|
---|
82 | timer.start();
|
---|
83 | x = solver.solve(b);
|
---|
84 | timer.stop();
|
---|
85 | cout << "solve time " << timer.value() << std::endl;
|
---|
86 | /* Check the accuracy */
|
---|
87 | Matrix<scalar, Dynamic, 1> tmp2 = b - A*x;
|
---|
88 | scalar tempNorm = tmp2.norm()/b.norm();
|
---|
89 | cout << "Relative norm of the computed solution : " << tempNorm <<"\n";
|
---|
90 | cout << "Number of nonzeros in the factor : " << solver.nnzL() + solver.nnzU() << std::endl;
|
---|
91 |
|
---|
92 | return 0;
|
---|
93 | } |
---|