1 |
|
---|
2 | //g++-4.4 -DNOMTL -Wl,-rpath /usr/local/lib/oski -L /usr/local/lib/oski/ -l oski -l oski_util -l oski_util_Tid -DOSKI -I ~/Coding/LinearAlgebra/mtl4/ spmv.cpp -I .. -O2 -DNDEBUG -lrt -lm -l oski_mat_CSC_Tid -loskilt && ./a.out r200000 c200000 n100 t1 p1
|
---|
3 |
|
---|
4 | #define SCALAR double
|
---|
5 |
|
---|
6 | #include <iostream>
|
---|
7 | #include <algorithm>
|
---|
8 | #include "BenchTimer.h"
|
---|
9 | #include "BenchSparseUtil.h"
|
---|
10 |
|
---|
11 | #define SPMV_BENCH(CODE) BENCH(t,tries,repeats,CODE);
|
---|
12 |
|
---|
13 | // #ifdef MKL
|
---|
14 | //
|
---|
15 | // #include "mkl_types.h"
|
---|
16 | // #include "mkl_spblas.h"
|
---|
17 | //
|
---|
18 | // template<typename Lhs,typename Rhs,typename Res>
|
---|
19 | // void mkl_multiply(const Lhs& lhs, const Rhs& rhs, Res& res)
|
---|
20 | // {
|
---|
21 | // char n = 'N';
|
---|
22 | // float alpha = 1;
|
---|
23 | // char matdescra[6];
|
---|
24 | // matdescra[0] = 'G';
|
---|
25 | // matdescra[1] = 0;
|
---|
26 | // matdescra[2] = 0;
|
---|
27 | // matdescra[3] = 'C';
|
---|
28 | // mkl_scscmm(&n, lhs.rows(), rhs.cols(), lhs.cols(), &alpha, matdescra,
|
---|
29 | // lhs._valuePtr(), lhs._innerIndexPtr(), lhs.outerIndexPtr(),
|
---|
30 | // pntre, b, &ldb, &beta, c, &ldc);
|
---|
31 | // // mkl_somatcopy('C', 'T', lhs.rows(), lhs.cols(), 1,
|
---|
32 | // // lhs._valuePtr(), lhs.rows(), DST, dst_stride);
|
---|
33 | // }
|
---|
34 | //
|
---|
35 | // #endif
|
---|
36 |
|
---|
37 | int main(int argc, char *argv[])
|
---|
38 | {
|
---|
39 | int size = 10000;
|
---|
40 | int rows = size;
|
---|
41 | int cols = size;
|
---|
42 | int nnzPerCol = 40;
|
---|
43 | int tries = 2;
|
---|
44 | int repeats = 2;
|
---|
45 |
|
---|
46 | bool need_help = false;
|
---|
47 | for(int i = 1; i < argc; i++)
|
---|
48 | {
|
---|
49 | if(argv[i][0] == 'r')
|
---|
50 | {
|
---|
51 | rows = atoi(argv[i]+1);
|
---|
52 | }
|
---|
53 | else if(argv[i][0] == 'c')
|
---|
54 | {
|
---|
55 | cols = atoi(argv[i]+1);
|
---|
56 | }
|
---|
57 | else if(argv[i][0] == 'n')
|
---|
58 | {
|
---|
59 | nnzPerCol = atoi(argv[i]+1);
|
---|
60 | }
|
---|
61 | else if(argv[i][0] == 't')
|
---|
62 | {
|
---|
63 | tries = atoi(argv[i]+1);
|
---|
64 | }
|
---|
65 | else if(argv[i][0] == 'p')
|
---|
66 | {
|
---|
67 | repeats = atoi(argv[i]+1);
|
---|
68 | }
|
---|
69 | else
|
---|
70 | {
|
---|
71 | need_help = true;
|
---|
72 | }
|
---|
73 | }
|
---|
74 | if(need_help)
|
---|
75 | {
|
---|
76 | std::cout << argv[0] << " r<nb rows> c<nb columns> n<non zeros per column> t<nb tries> p<nb repeats>\n";
|
---|
77 | return 1;
|
---|
78 | }
|
---|
79 |
|
---|
80 | std::cout << "SpMV " << rows << " x " << cols << " with " << nnzPerCol << " non zeros per column. (" << repeats << " repeats, and " << tries << " tries)\n\n";
|
---|
81 |
|
---|
82 | EigenSparseMatrix sm(rows,cols);
|
---|
83 | DenseVector dv(cols), res(rows);
|
---|
84 | dv.setRandom();
|
---|
85 |
|
---|
86 | BenchTimer t;
|
---|
87 | while (nnzPerCol>=4)
|
---|
88 | {
|
---|
89 | std::cout << "nnz: " << nnzPerCol << "\n";
|
---|
90 | sm.setZero();
|
---|
91 | fillMatrix2(nnzPerCol, rows, cols, sm);
|
---|
92 |
|
---|
93 | // dense matrices
|
---|
94 | #ifdef DENSEMATRIX
|
---|
95 | {
|
---|
96 | DenseMatrix dm(rows,cols), (rows,cols);
|
---|
97 | eiToDense(sm, dm);
|
---|
98 |
|
---|
99 | SPMV_BENCH(res = dm * sm);
|
---|
100 | std::cout << "Dense " << t.value()/repeats << "\t";
|
---|
101 |
|
---|
102 | SPMV_BENCH(res = dm.transpose() * sm);
|
---|
103 | std::cout << t.value()/repeats << endl;
|
---|
104 | }
|
---|
105 | #endif
|
---|
106 |
|
---|
107 | // eigen sparse matrices
|
---|
108 | {
|
---|
109 | SPMV_BENCH(res.noalias() += sm * dv; )
|
---|
110 | std::cout << "Eigen " << t.value()/repeats << "\t";
|
---|
111 |
|
---|
112 | SPMV_BENCH(res.noalias() += sm.transpose() * dv; )
|
---|
113 | std::cout << t.value()/repeats << endl;
|
---|
114 | }
|
---|
115 |
|
---|
116 | // CSparse
|
---|
117 | #ifdef CSPARSE
|
---|
118 | {
|
---|
119 | std::cout << "CSparse \n";
|
---|
120 | cs *csm;
|
---|
121 | eiToCSparse(sm, csm);
|
---|
122 |
|
---|
123 | // BENCH();
|
---|
124 | // timer.stop();
|
---|
125 | // std::cout << " a * b:\t" << timer.value() << endl;
|
---|
126 |
|
---|
127 | // BENCH( { m3 = cs_sorted_multiply2(m1, m2); cs_spfree(m3); } );
|
---|
128 | // std::cout << " a * b:\t" << timer.value() << endl;
|
---|
129 | }
|
---|
130 | #endif
|
---|
131 |
|
---|
132 | #ifdef OSKI
|
---|
133 | {
|
---|
134 | oski_matrix_t om;
|
---|
135 | oski_vecview_t ov, ores;
|
---|
136 | oski_Init();
|
---|
137 | om = oski_CreateMatCSC(sm._outerIndexPtr(), sm._innerIndexPtr(), sm._valuePtr(), rows, cols,
|
---|
138 | SHARE_INPUTMAT, 1, INDEX_ZERO_BASED);
|
---|
139 | ov = oski_CreateVecView(dv.data(), cols, STRIDE_UNIT);
|
---|
140 | ores = oski_CreateVecView(res.data(), rows, STRIDE_UNIT);
|
---|
141 |
|
---|
142 | SPMV_BENCH( oski_MatMult(om, OP_NORMAL, 1, ov, 0, ores) );
|
---|
143 | std::cout << "OSKI " << t.value()/repeats << "\t";
|
---|
144 |
|
---|
145 | SPMV_BENCH( oski_MatMult(om, OP_TRANS, 1, ov, 0, ores) );
|
---|
146 | std::cout << t.value()/repeats << "\n";
|
---|
147 |
|
---|
148 | // tune
|
---|
149 | t.reset();
|
---|
150 | t.start();
|
---|
151 | oski_SetHintMatMult(om, OP_NORMAL, 1.0, SYMBOLIC_VEC, 0.0, SYMBOLIC_VEC, ALWAYS_TUNE_AGGRESSIVELY);
|
---|
152 | oski_TuneMat(om);
|
---|
153 | t.stop();
|
---|
154 | double tuning = t.value();
|
---|
155 |
|
---|
156 | SPMV_BENCH( oski_MatMult(om, OP_NORMAL, 1, ov, 0, ores) );
|
---|
157 | std::cout << "OSKI tuned " << t.value()/repeats << "\t";
|
---|
158 |
|
---|
159 | SPMV_BENCH( oski_MatMult(om, OP_TRANS, 1, ov, 0, ores) );
|
---|
160 | std::cout << t.value()/repeats << "\t(" << tuning << ")\n";
|
---|
161 |
|
---|
162 |
|
---|
163 | oski_DestroyMat(om);
|
---|
164 | oski_DestroyVecView(ov);
|
---|
165 | oski_DestroyVecView(ores);
|
---|
166 | oski_Close();
|
---|
167 | }
|
---|
168 | #endif
|
---|
169 |
|
---|
170 | #ifndef NOUBLAS
|
---|
171 | {
|
---|
172 | using namespace boost::numeric;
|
---|
173 | UblasMatrix um(rows,cols);
|
---|
174 | eiToUblas(sm, um);
|
---|
175 |
|
---|
176 | boost::numeric::ublas::vector<Scalar> uv(cols), ures(rows);
|
---|
177 | Map<Matrix<Scalar,Dynamic,1> >(&uv[0], cols) = dv;
|
---|
178 | Map<Matrix<Scalar,Dynamic,1> >(&ures[0], rows) = res;
|
---|
179 |
|
---|
180 | SPMV_BENCH(ublas::axpy_prod(um, uv, ures, true));
|
---|
181 | std::cout << "ublas " << t.value()/repeats << "\t";
|
---|
182 |
|
---|
183 | SPMV_BENCH(ublas::axpy_prod(boost::numeric::ublas::trans(um), uv, ures, true));
|
---|
184 | std::cout << t.value()/repeats << endl;
|
---|
185 | }
|
---|
186 | #endif
|
---|
187 |
|
---|
188 | // GMM++
|
---|
189 | #ifndef NOGMM
|
---|
190 | {
|
---|
191 | GmmSparse gm(rows,cols);
|
---|
192 | eiToGmm(sm, gm);
|
---|
193 |
|
---|
194 | std::vector<Scalar> gv(cols), gres(rows);
|
---|
195 | Map<Matrix<Scalar,Dynamic,1> >(&gv[0], cols) = dv;
|
---|
196 | Map<Matrix<Scalar,Dynamic,1> >(&gres[0], rows) = res;
|
---|
197 |
|
---|
198 | SPMV_BENCH(gmm::mult(gm, gv, gres));
|
---|
199 | std::cout << "GMM++ " << t.value()/repeats << "\t";
|
---|
200 |
|
---|
201 | SPMV_BENCH(gmm::mult(gmm::transposed(gm), gv, gres));
|
---|
202 | std::cout << t.value()/repeats << endl;
|
---|
203 | }
|
---|
204 | #endif
|
---|
205 |
|
---|
206 | // MTL4
|
---|
207 | #ifndef NOMTL
|
---|
208 | {
|
---|
209 | MtlSparse mm(rows,cols);
|
---|
210 | eiToMtl(sm, mm);
|
---|
211 | mtl::dense_vector<Scalar> mv(cols, 1.0);
|
---|
212 | mtl::dense_vector<Scalar> mres(rows, 1.0);
|
---|
213 |
|
---|
214 | SPMV_BENCH(mres = mm * mv);
|
---|
215 | std::cout << "MTL4 " << t.value()/repeats << "\t";
|
---|
216 |
|
---|
217 | SPMV_BENCH(mres = trans(mm) * mv);
|
---|
218 | std::cout << t.value()/repeats << endl;
|
---|
219 | }
|
---|
220 | #endif
|
---|
221 |
|
---|
222 | std::cout << "\n";
|
---|
223 |
|
---|
224 | if(nnzPerCol==1)
|
---|
225 | break;
|
---|
226 | nnzPerCol -= nnzPerCol/2;
|
---|
227 | }
|
---|
228 |
|
---|
229 | return 0;
|
---|
230 | }
|
---|
231 |
|
---|
232 |
|
---|
233 |
|
---|