1 | SUBROUTINE CHPMV(UPLO,N,ALPHA,AP,X,INCX,BETA,Y,INCY)
|
---|
2 | * .. Scalar Arguments ..
|
---|
3 | COMPLEX ALPHA,BETA
|
---|
4 | INTEGER INCX,INCY,N
|
---|
5 | CHARACTER UPLO
|
---|
6 | * ..
|
---|
7 | * .. Array Arguments ..
|
---|
8 | COMPLEX AP(*),X(*),Y(*)
|
---|
9 | * ..
|
---|
10 | *
|
---|
11 | * Purpose
|
---|
12 | * =======
|
---|
13 | *
|
---|
14 | * CHPMV performs the matrix-vector operation
|
---|
15 | *
|
---|
16 | * y := alpha*A*x + beta*y,
|
---|
17 | *
|
---|
18 | * where alpha and beta are scalars, x and y are n element vectors and
|
---|
19 | * A is an n by n hermitian matrix, supplied in packed form.
|
---|
20 | *
|
---|
21 | * Arguments
|
---|
22 | * ==========
|
---|
23 | *
|
---|
24 | * UPLO - CHARACTER*1.
|
---|
25 | * On entry, UPLO specifies whether the upper or lower
|
---|
26 | * triangular part of the matrix A is supplied in the packed
|
---|
27 | * array AP as follows:
|
---|
28 | *
|
---|
29 | * UPLO = 'U' or 'u' The upper triangular part of A is
|
---|
30 | * supplied in AP.
|
---|
31 | *
|
---|
32 | * UPLO = 'L' or 'l' The lower triangular part of A is
|
---|
33 | * supplied in AP.
|
---|
34 | *
|
---|
35 | * Unchanged on exit.
|
---|
36 | *
|
---|
37 | * N - INTEGER.
|
---|
38 | * On entry, N specifies the order of the matrix A.
|
---|
39 | * N must be at least zero.
|
---|
40 | * Unchanged on exit.
|
---|
41 | *
|
---|
42 | * ALPHA - COMPLEX .
|
---|
43 | * On entry, ALPHA specifies the scalar alpha.
|
---|
44 | * Unchanged on exit.
|
---|
45 | *
|
---|
46 | * AP - COMPLEX array of DIMENSION at least
|
---|
47 | * ( ( n*( n + 1 ) )/2 ).
|
---|
48 | * Before entry with UPLO = 'U' or 'u', the array AP must
|
---|
49 | * contain the upper triangular part of the hermitian matrix
|
---|
50 | * packed sequentially, column by column, so that AP( 1 )
|
---|
51 | * contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 1, 2 )
|
---|
52 | * and a( 2, 2 ) respectively, and so on.
|
---|
53 | * Before entry with UPLO = 'L' or 'l', the array AP must
|
---|
54 | * contain the lower triangular part of the hermitian matrix
|
---|
55 | * packed sequentially, column by column, so that AP( 1 )
|
---|
56 | * contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 2, 1 )
|
---|
57 | * and a( 3, 1 ) respectively, and so on.
|
---|
58 | * Note that the imaginary parts of the diagonal elements need
|
---|
59 | * not be set and are assumed to be zero.
|
---|
60 | * Unchanged on exit.
|
---|
61 | *
|
---|
62 | * X - COMPLEX array of dimension at least
|
---|
63 | * ( 1 + ( n - 1 )*abs( INCX ) ).
|
---|
64 | * Before entry, the incremented array X must contain the n
|
---|
65 | * element vector x.
|
---|
66 | * Unchanged on exit.
|
---|
67 | *
|
---|
68 | * INCX - INTEGER.
|
---|
69 | * On entry, INCX specifies the increment for the elements of
|
---|
70 | * X. INCX must not be zero.
|
---|
71 | * Unchanged on exit.
|
---|
72 | *
|
---|
73 | * BETA - COMPLEX .
|
---|
74 | * On entry, BETA specifies the scalar beta. When BETA is
|
---|
75 | * supplied as zero then Y need not be set on input.
|
---|
76 | * Unchanged on exit.
|
---|
77 | *
|
---|
78 | * Y - COMPLEX array of dimension at least
|
---|
79 | * ( 1 + ( n - 1 )*abs( INCY ) ).
|
---|
80 | * Before entry, the incremented array Y must contain the n
|
---|
81 | * element vector y. On exit, Y is overwritten by the updated
|
---|
82 | * vector y.
|
---|
83 | *
|
---|
84 | * INCY - INTEGER.
|
---|
85 | * On entry, INCY specifies the increment for the elements of
|
---|
86 | * Y. INCY must not be zero.
|
---|
87 | * Unchanged on exit.
|
---|
88 | *
|
---|
89 | * Further Details
|
---|
90 | * ===============
|
---|
91 | *
|
---|
92 | * Level 2 Blas routine.
|
---|
93 | *
|
---|
94 | * -- Written on 22-October-1986.
|
---|
95 | * Jack Dongarra, Argonne National Lab.
|
---|
96 | * Jeremy Du Croz, Nag Central Office.
|
---|
97 | * Sven Hammarling, Nag Central Office.
|
---|
98 | * Richard Hanson, Sandia National Labs.
|
---|
99 | *
|
---|
100 | * =====================================================================
|
---|
101 | *
|
---|
102 | * .. Parameters ..
|
---|
103 | COMPLEX ONE
|
---|
104 | PARAMETER (ONE= (1.0E+0,0.0E+0))
|
---|
105 | COMPLEX ZERO
|
---|
106 | PARAMETER (ZERO= (0.0E+0,0.0E+0))
|
---|
107 | * ..
|
---|
108 | * .. Local Scalars ..
|
---|
109 | COMPLEX TEMP1,TEMP2
|
---|
110 | INTEGER I,INFO,IX,IY,J,JX,JY,K,KK,KX,KY
|
---|
111 | * ..
|
---|
112 | * .. External Functions ..
|
---|
113 | LOGICAL LSAME
|
---|
114 | EXTERNAL LSAME
|
---|
115 | * ..
|
---|
116 | * .. External Subroutines ..
|
---|
117 | EXTERNAL XERBLA
|
---|
118 | * ..
|
---|
119 | * .. Intrinsic Functions ..
|
---|
120 | INTRINSIC CONJG,REAL
|
---|
121 | * ..
|
---|
122 | *
|
---|
123 | * Test the input parameters.
|
---|
124 | *
|
---|
125 | INFO = 0
|
---|
126 | IF (.NOT.LSAME(UPLO,'U') .AND. .NOT.LSAME(UPLO,'L')) THEN
|
---|
127 | INFO = 1
|
---|
128 | ELSE IF (N.LT.0) THEN
|
---|
129 | INFO = 2
|
---|
130 | ELSE IF (INCX.EQ.0) THEN
|
---|
131 | INFO = 6
|
---|
132 | ELSE IF (INCY.EQ.0) THEN
|
---|
133 | INFO = 9
|
---|
134 | END IF
|
---|
135 | IF (INFO.NE.0) THEN
|
---|
136 | CALL XERBLA('CHPMV ',INFO)
|
---|
137 | RETURN
|
---|
138 | END IF
|
---|
139 | *
|
---|
140 | * Quick return if possible.
|
---|
141 | *
|
---|
142 | IF ((N.EQ.0) .OR. ((ALPHA.EQ.ZERO).AND. (BETA.EQ.ONE))) RETURN
|
---|
143 | *
|
---|
144 | * Set up the start points in X and Y.
|
---|
145 | *
|
---|
146 | IF (INCX.GT.0) THEN
|
---|
147 | KX = 1
|
---|
148 | ELSE
|
---|
149 | KX = 1 - (N-1)*INCX
|
---|
150 | END IF
|
---|
151 | IF (INCY.GT.0) THEN
|
---|
152 | KY = 1
|
---|
153 | ELSE
|
---|
154 | KY = 1 - (N-1)*INCY
|
---|
155 | END IF
|
---|
156 | *
|
---|
157 | * Start the operations. In this version the elements of the array AP
|
---|
158 | * are accessed sequentially with one pass through AP.
|
---|
159 | *
|
---|
160 | * First form y := beta*y.
|
---|
161 | *
|
---|
162 | IF (BETA.NE.ONE) THEN
|
---|
163 | IF (INCY.EQ.1) THEN
|
---|
164 | IF (BETA.EQ.ZERO) THEN
|
---|
165 | DO 10 I = 1,N
|
---|
166 | Y(I) = ZERO
|
---|
167 | 10 CONTINUE
|
---|
168 | ELSE
|
---|
169 | DO 20 I = 1,N
|
---|
170 | Y(I) = BETA*Y(I)
|
---|
171 | 20 CONTINUE
|
---|
172 | END IF
|
---|
173 | ELSE
|
---|
174 | IY = KY
|
---|
175 | IF (BETA.EQ.ZERO) THEN
|
---|
176 | DO 30 I = 1,N
|
---|
177 | Y(IY) = ZERO
|
---|
178 | IY = IY + INCY
|
---|
179 | 30 CONTINUE
|
---|
180 | ELSE
|
---|
181 | DO 40 I = 1,N
|
---|
182 | Y(IY) = BETA*Y(IY)
|
---|
183 | IY = IY + INCY
|
---|
184 | 40 CONTINUE
|
---|
185 | END IF
|
---|
186 | END IF
|
---|
187 | END IF
|
---|
188 | IF (ALPHA.EQ.ZERO) RETURN
|
---|
189 | KK = 1
|
---|
190 | IF (LSAME(UPLO,'U')) THEN
|
---|
191 | *
|
---|
192 | * Form y when AP contains the upper triangle.
|
---|
193 | *
|
---|
194 | IF ((INCX.EQ.1) .AND. (INCY.EQ.1)) THEN
|
---|
195 | DO 60 J = 1,N
|
---|
196 | TEMP1 = ALPHA*X(J)
|
---|
197 | TEMP2 = ZERO
|
---|
198 | K = KK
|
---|
199 | DO 50 I = 1,J - 1
|
---|
200 | Y(I) = Y(I) + TEMP1*AP(K)
|
---|
201 | TEMP2 = TEMP2 + CONJG(AP(K))*X(I)
|
---|
202 | K = K + 1
|
---|
203 | 50 CONTINUE
|
---|
204 | Y(J) = Y(J) + TEMP1*REAL(AP(KK+J-1)) + ALPHA*TEMP2
|
---|
205 | KK = KK + J
|
---|
206 | 60 CONTINUE
|
---|
207 | ELSE
|
---|
208 | JX = KX
|
---|
209 | JY = KY
|
---|
210 | DO 80 J = 1,N
|
---|
211 | TEMP1 = ALPHA*X(JX)
|
---|
212 | TEMP2 = ZERO
|
---|
213 | IX = KX
|
---|
214 | IY = KY
|
---|
215 | DO 70 K = KK,KK + J - 2
|
---|
216 | Y(IY) = Y(IY) + TEMP1*AP(K)
|
---|
217 | TEMP2 = TEMP2 + CONJG(AP(K))*X(IX)
|
---|
218 | IX = IX + INCX
|
---|
219 | IY = IY + INCY
|
---|
220 | 70 CONTINUE
|
---|
221 | Y(JY) = Y(JY) + TEMP1*REAL(AP(KK+J-1)) + ALPHA*TEMP2
|
---|
222 | JX = JX + INCX
|
---|
223 | JY = JY + INCY
|
---|
224 | KK = KK + J
|
---|
225 | 80 CONTINUE
|
---|
226 | END IF
|
---|
227 | ELSE
|
---|
228 | *
|
---|
229 | * Form y when AP contains the lower triangle.
|
---|
230 | *
|
---|
231 | IF ((INCX.EQ.1) .AND. (INCY.EQ.1)) THEN
|
---|
232 | DO 100 J = 1,N
|
---|
233 | TEMP1 = ALPHA*X(J)
|
---|
234 | TEMP2 = ZERO
|
---|
235 | Y(J) = Y(J) + TEMP1*REAL(AP(KK))
|
---|
236 | K = KK + 1
|
---|
237 | DO 90 I = J + 1,N
|
---|
238 | Y(I) = Y(I) + TEMP1*AP(K)
|
---|
239 | TEMP2 = TEMP2 + CONJG(AP(K))*X(I)
|
---|
240 | K = K + 1
|
---|
241 | 90 CONTINUE
|
---|
242 | Y(J) = Y(J) + ALPHA*TEMP2
|
---|
243 | KK = KK + (N-J+1)
|
---|
244 | 100 CONTINUE
|
---|
245 | ELSE
|
---|
246 | JX = KX
|
---|
247 | JY = KY
|
---|
248 | DO 120 J = 1,N
|
---|
249 | TEMP1 = ALPHA*X(JX)
|
---|
250 | TEMP2 = ZERO
|
---|
251 | Y(JY) = Y(JY) + TEMP1*REAL(AP(KK))
|
---|
252 | IX = JX
|
---|
253 | IY = JY
|
---|
254 | DO 110 K = KK + 1,KK + N - J
|
---|
255 | IX = IX + INCX
|
---|
256 | IY = IY + INCY
|
---|
257 | Y(IY) = Y(IY) + TEMP1*AP(K)
|
---|
258 | TEMP2 = TEMP2 + CONJG(AP(K))*X(IX)
|
---|
259 | 110 CONTINUE
|
---|
260 | Y(JY) = Y(JY) + ALPHA*TEMP2
|
---|
261 | JX = JX + INCX
|
---|
262 | JY = JY + INCY
|
---|
263 | KK = KK + (N-J+1)
|
---|
264 | 120 CONTINUE
|
---|
265 | END IF
|
---|
266 | END IF
|
---|
267 | *
|
---|
268 | RETURN
|
---|
269 | *
|
---|
270 | * End of CHPMV .
|
---|
271 | *
|
---|
272 | END
|
---|