source: pacpussensors/trunk/Vislab/lib3dv-1.2.0/lib3dv/eigen/blas/ssbmv.f@ 142

Last change on this file since 142 was 136, checked in by ldecherf, 8 years ago

Doc

File size: 9.4 KB
Line 
1 SUBROUTINE SSBMV(UPLO,N,K,ALPHA,A,LDA,X,INCX,BETA,Y,INCY)
2* .. Scalar Arguments ..
3 REAL ALPHA,BETA
4 INTEGER INCX,INCY,K,LDA,N
5 CHARACTER UPLO
6* ..
7* .. Array Arguments ..
8 REAL A(LDA,*),X(*),Y(*)
9* ..
10*
11* Purpose
12* =======
13*
14* SSBMV performs the matrix-vector operation
15*
16* y := alpha*A*x + beta*y,
17*
18* where alpha and beta are scalars, x and y are n element vectors and
19* A is an n by n symmetric band matrix, with k super-diagonals.
20*
21* Arguments
22* ==========
23*
24* UPLO - CHARACTER*1.
25* On entry, UPLO specifies whether the upper or lower
26* triangular part of the band matrix A is being supplied as
27* follows:
28*
29* UPLO = 'U' or 'u' The upper triangular part of A is
30* being supplied.
31*
32* UPLO = 'L' or 'l' The lower triangular part of A is
33* being supplied.
34*
35* Unchanged on exit.
36*
37* N - INTEGER.
38* On entry, N specifies the order of the matrix A.
39* N must be at least zero.
40* Unchanged on exit.
41*
42* K - INTEGER.
43* On entry, K specifies the number of super-diagonals of the
44* matrix A. K must satisfy 0 .le. K.
45* Unchanged on exit.
46*
47* ALPHA - REAL .
48* On entry, ALPHA specifies the scalar alpha.
49* Unchanged on exit.
50*
51* A - REAL array of DIMENSION ( LDA, n ).
52* Before entry with UPLO = 'U' or 'u', the leading ( k + 1 )
53* by n part of the array A must contain the upper triangular
54* band part of the symmetric matrix, supplied column by
55* column, with the leading diagonal of the matrix in row
56* ( k + 1 ) of the array, the first super-diagonal starting at
57* position 2 in row k, and so on. The top left k by k triangle
58* of the array A is not referenced.
59* The following program segment will transfer the upper
60* triangular part of a symmetric band matrix from conventional
61* full matrix storage to band storage:
62*
63* DO 20, J = 1, N
64* M = K + 1 - J
65* DO 10, I = MAX( 1, J - K ), J
66* A( M + I, J ) = matrix( I, J )
67* 10 CONTINUE
68* 20 CONTINUE
69*
70* Before entry with UPLO = 'L' or 'l', the leading ( k + 1 )
71* by n part of the array A must contain the lower triangular
72* band part of the symmetric matrix, supplied column by
73* column, with the leading diagonal of the matrix in row 1 of
74* the array, the first sub-diagonal starting at position 1 in
75* row 2, and so on. The bottom right k by k triangle of the
76* array A is not referenced.
77* The following program segment will transfer the lower
78* triangular part of a symmetric band matrix from conventional
79* full matrix storage to band storage:
80*
81* DO 20, J = 1, N
82* M = 1 - J
83* DO 10, I = J, MIN( N, J + K )
84* A( M + I, J ) = matrix( I, J )
85* 10 CONTINUE
86* 20 CONTINUE
87*
88* Unchanged on exit.
89*
90* LDA - INTEGER.
91* On entry, LDA specifies the first dimension of A as declared
92* in the calling (sub) program. LDA must be at least
93* ( k + 1 ).
94* Unchanged on exit.
95*
96* X - REAL array of DIMENSION at least
97* ( 1 + ( n - 1 )*abs( INCX ) ).
98* Before entry, the incremented array X must contain the
99* vector x.
100* Unchanged on exit.
101*
102* INCX - INTEGER.
103* On entry, INCX specifies the increment for the elements of
104* X. INCX must not be zero.
105* Unchanged on exit.
106*
107* BETA - REAL .
108* On entry, BETA specifies the scalar beta.
109* Unchanged on exit.
110*
111* Y - REAL array of DIMENSION at least
112* ( 1 + ( n - 1 )*abs( INCY ) ).
113* Before entry, the incremented array Y must contain the
114* vector y. On exit, Y is overwritten by the updated vector y.
115*
116* INCY - INTEGER.
117* On entry, INCY specifies the increment for the elements of
118* Y. INCY must not be zero.
119* Unchanged on exit.
120*
121* Further Details
122* ===============
123*
124* Level 2 Blas routine.
125*
126* -- Written on 22-October-1986.
127* Jack Dongarra, Argonne National Lab.
128* Jeremy Du Croz, Nag Central Office.
129* Sven Hammarling, Nag Central Office.
130* Richard Hanson, Sandia National Labs.
131*
132* =====================================================================
133*
134* .. Parameters ..
135 REAL ONE,ZERO
136 PARAMETER (ONE=1.0E+0,ZERO=0.0E+0)
137* ..
138* .. Local Scalars ..
139 REAL TEMP1,TEMP2
140 INTEGER I,INFO,IX,IY,J,JX,JY,KPLUS1,KX,KY,L
141* ..
142* .. External Functions ..
143 LOGICAL LSAME
144 EXTERNAL LSAME
145* ..
146* .. External Subroutines ..
147 EXTERNAL XERBLA
148* ..
149* .. Intrinsic Functions ..
150 INTRINSIC MAX,MIN
151* ..
152*
153* Test the input parameters.
154*
155 INFO = 0
156 IF (.NOT.LSAME(UPLO,'U') .AND. .NOT.LSAME(UPLO,'L')) THEN
157 INFO = 1
158 ELSE IF (N.LT.0) THEN
159 INFO = 2
160 ELSE IF (K.LT.0) THEN
161 INFO = 3
162 ELSE IF (LDA.LT. (K+1)) THEN
163 INFO = 6
164 ELSE IF (INCX.EQ.0) THEN
165 INFO = 8
166 ELSE IF (INCY.EQ.0) THEN
167 INFO = 11
168 END IF
169 IF (INFO.NE.0) THEN
170 CALL XERBLA('SSBMV ',INFO)
171 RETURN
172 END IF
173*
174* Quick return if possible.
175*
176 IF ((N.EQ.0) .OR. ((ALPHA.EQ.ZERO).AND. (BETA.EQ.ONE))) RETURN
177*
178* Set up the start points in X and Y.
179*
180 IF (INCX.GT.0) THEN
181 KX = 1
182 ELSE
183 KX = 1 - (N-1)*INCX
184 END IF
185 IF (INCY.GT.0) THEN
186 KY = 1
187 ELSE
188 KY = 1 - (N-1)*INCY
189 END IF
190*
191* Start the operations. In this version the elements of the array A
192* are accessed sequentially with one pass through A.
193*
194* First form y := beta*y.
195*
196 IF (BETA.NE.ONE) THEN
197 IF (INCY.EQ.1) THEN
198 IF (BETA.EQ.ZERO) THEN
199 DO 10 I = 1,N
200 Y(I) = ZERO
201 10 CONTINUE
202 ELSE
203 DO 20 I = 1,N
204 Y(I) = BETA*Y(I)
205 20 CONTINUE
206 END IF
207 ELSE
208 IY = KY
209 IF (BETA.EQ.ZERO) THEN
210 DO 30 I = 1,N
211 Y(IY) = ZERO
212 IY = IY + INCY
213 30 CONTINUE
214 ELSE
215 DO 40 I = 1,N
216 Y(IY) = BETA*Y(IY)
217 IY = IY + INCY
218 40 CONTINUE
219 END IF
220 END IF
221 END IF
222 IF (ALPHA.EQ.ZERO) RETURN
223 IF (LSAME(UPLO,'U')) THEN
224*
225* Form y when upper triangle of A is stored.
226*
227 KPLUS1 = K + 1
228 IF ((INCX.EQ.1) .AND. (INCY.EQ.1)) THEN
229 DO 60 J = 1,N
230 TEMP1 = ALPHA*X(J)
231 TEMP2 = ZERO
232 L = KPLUS1 - J
233 DO 50 I = MAX(1,J-K),J - 1
234 Y(I) = Y(I) + TEMP1*A(L+I,J)
235 TEMP2 = TEMP2 + A(L+I,J)*X(I)
236 50 CONTINUE
237 Y(J) = Y(J) + TEMP1*A(KPLUS1,J) + ALPHA*TEMP2
238 60 CONTINUE
239 ELSE
240 JX = KX
241 JY = KY
242 DO 80 J = 1,N
243 TEMP1 = ALPHA*X(JX)
244 TEMP2 = ZERO
245 IX = KX
246 IY = KY
247 L = KPLUS1 - J
248 DO 70 I = MAX(1,J-K),J - 1
249 Y(IY) = Y(IY) + TEMP1*A(L+I,J)
250 TEMP2 = TEMP2 + A(L+I,J)*X(IX)
251 IX = IX + INCX
252 IY = IY + INCY
253 70 CONTINUE
254 Y(JY) = Y(JY) + TEMP1*A(KPLUS1,J) + ALPHA*TEMP2
255 JX = JX + INCX
256 JY = JY + INCY
257 IF (J.GT.K) THEN
258 KX = KX + INCX
259 KY = KY + INCY
260 END IF
261 80 CONTINUE
262 END IF
263 ELSE
264*
265* Form y when lower triangle of A is stored.
266*
267 IF ((INCX.EQ.1) .AND. (INCY.EQ.1)) THEN
268 DO 100 J = 1,N
269 TEMP1 = ALPHA*X(J)
270 TEMP2 = ZERO
271 Y(J) = Y(J) + TEMP1*A(1,J)
272 L = 1 - J
273 DO 90 I = J + 1,MIN(N,J+K)
274 Y(I) = Y(I) + TEMP1*A(L+I,J)
275 TEMP2 = TEMP2 + A(L+I,J)*X(I)
276 90 CONTINUE
277 Y(J) = Y(J) + ALPHA*TEMP2
278 100 CONTINUE
279 ELSE
280 JX = KX
281 JY = KY
282 DO 120 J = 1,N
283 TEMP1 = ALPHA*X(JX)
284 TEMP2 = ZERO
285 Y(JY) = Y(JY) + TEMP1*A(1,J)
286 L = 1 - J
287 IX = JX
288 IY = JY
289 DO 110 I = J + 1,MIN(N,J+K)
290 IX = IX + INCX
291 IY = IY + INCY
292 Y(IY) = Y(IY) + TEMP1*A(L+I,J)
293 TEMP2 = TEMP2 + A(L+I,J)*X(IX)
294 110 CONTINUE
295 Y(JY) = Y(JY) + ALPHA*TEMP2
296 JX = JX + INCX
297 JY = JY + INCY
298 120 CONTINUE
299 END IF
300 END IF
301*
302 RETURN
303*
304* End of SSBMV .
305*
306 END
Note: See TracBrowser for help on using the repository browser.