1 | SUBROUTINE ZTBMV(UPLO,TRANS,DIAG,N,K,A,LDA,X,INCX)
|
---|
2 | * .. Scalar Arguments ..
|
---|
3 | INTEGER INCX,K,LDA,N
|
---|
4 | CHARACTER DIAG,TRANS,UPLO
|
---|
5 | * ..
|
---|
6 | * .. Array Arguments ..
|
---|
7 | DOUBLE COMPLEX A(LDA,*),X(*)
|
---|
8 | * ..
|
---|
9 | *
|
---|
10 | * Purpose
|
---|
11 | * =======
|
---|
12 | *
|
---|
13 | * ZTBMV performs one of the matrix-vector operations
|
---|
14 | *
|
---|
15 | * x := A*x, or x := A'*x, or x := conjg( A' )*x,
|
---|
16 | *
|
---|
17 | * where x is an n element vector and A is an n by n unit, or non-unit,
|
---|
18 | * upper or lower triangular band matrix, with ( k + 1 ) diagonals.
|
---|
19 | *
|
---|
20 | * Arguments
|
---|
21 | * ==========
|
---|
22 | *
|
---|
23 | * UPLO - CHARACTER*1.
|
---|
24 | * On entry, UPLO specifies whether the matrix is an upper or
|
---|
25 | * lower triangular matrix as follows:
|
---|
26 | *
|
---|
27 | * UPLO = 'U' or 'u' A is an upper triangular matrix.
|
---|
28 | *
|
---|
29 | * UPLO = 'L' or 'l' A is a lower triangular matrix.
|
---|
30 | *
|
---|
31 | * Unchanged on exit.
|
---|
32 | *
|
---|
33 | * TRANS - CHARACTER*1.
|
---|
34 | * On entry, TRANS specifies the operation to be performed as
|
---|
35 | * follows:
|
---|
36 | *
|
---|
37 | * TRANS = 'N' or 'n' x := A*x.
|
---|
38 | *
|
---|
39 | * TRANS = 'T' or 't' x := A'*x.
|
---|
40 | *
|
---|
41 | * TRANS = 'C' or 'c' x := conjg( A' )*x.
|
---|
42 | *
|
---|
43 | * Unchanged on exit.
|
---|
44 | *
|
---|
45 | * DIAG - CHARACTER*1.
|
---|
46 | * On entry, DIAG specifies whether or not A is unit
|
---|
47 | * triangular as follows:
|
---|
48 | *
|
---|
49 | * DIAG = 'U' or 'u' A is assumed to be unit triangular.
|
---|
50 | *
|
---|
51 | * DIAG = 'N' or 'n' A is not assumed to be unit
|
---|
52 | * triangular.
|
---|
53 | *
|
---|
54 | * Unchanged on exit.
|
---|
55 | *
|
---|
56 | * N - INTEGER.
|
---|
57 | * On entry, N specifies the order of the matrix A.
|
---|
58 | * N must be at least zero.
|
---|
59 | * Unchanged on exit.
|
---|
60 | *
|
---|
61 | * K - INTEGER.
|
---|
62 | * On entry with UPLO = 'U' or 'u', K specifies the number of
|
---|
63 | * super-diagonals of the matrix A.
|
---|
64 | * On entry with UPLO = 'L' or 'l', K specifies the number of
|
---|
65 | * sub-diagonals of the matrix A.
|
---|
66 | * K must satisfy 0 .le. K.
|
---|
67 | * Unchanged on exit.
|
---|
68 | *
|
---|
69 | * A - COMPLEX*16 array of DIMENSION ( LDA, n ).
|
---|
70 | * Before entry with UPLO = 'U' or 'u', the leading ( k + 1 )
|
---|
71 | * by n part of the array A must contain the upper triangular
|
---|
72 | * band part of the matrix of coefficients, supplied column by
|
---|
73 | * column, with the leading diagonal of the matrix in row
|
---|
74 | * ( k + 1 ) of the array, the first super-diagonal starting at
|
---|
75 | * position 2 in row k, and so on. The top left k by k triangle
|
---|
76 | * of the array A is not referenced.
|
---|
77 | * The following program segment will transfer an upper
|
---|
78 | * triangular band matrix from conventional full matrix storage
|
---|
79 | * to band storage:
|
---|
80 | *
|
---|
81 | * DO 20, J = 1, N
|
---|
82 | * M = K + 1 - J
|
---|
83 | * DO 10, I = MAX( 1, J - K ), J
|
---|
84 | * A( M + I, J ) = matrix( I, J )
|
---|
85 | * 10 CONTINUE
|
---|
86 | * 20 CONTINUE
|
---|
87 | *
|
---|
88 | * Before entry with UPLO = 'L' or 'l', the leading ( k + 1 )
|
---|
89 | * by n part of the array A must contain the lower triangular
|
---|
90 | * band part of the matrix of coefficients, supplied column by
|
---|
91 | * column, with the leading diagonal of the matrix in row 1 of
|
---|
92 | * the array, the first sub-diagonal starting at position 1 in
|
---|
93 | * row 2, and so on. The bottom right k by k triangle of the
|
---|
94 | * array A is not referenced.
|
---|
95 | * The following program segment will transfer a lower
|
---|
96 | * triangular band matrix from conventional full matrix storage
|
---|
97 | * to band storage:
|
---|
98 | *
|
---|
99 | * DO 20, J = 1, N
|
---|
100 | * M = 1 - J
|
---|
101 | * DO 10, I = J, MIN( N, J + K )
|
---|
102 | * A( M + I, J ) = matrix( I, J )
|
---|
103 | * 10 CONTINUE
|
---|
104 | * 20 CONTINUE
|
---|
105 | *
|
---|
106 | * Note that when DIAG = 'U' or 'u' the elements of the array A
|
---|
107 | * corresponding to the diagonal elements of the matrix are not
|
---|
108 | * referenced, but are assumed to be unity.
|
---|
109 | * Unchanged on exit.
|
---|
110 | *
|
---|
111 | * LDA - INTEGER.
|
---|
112 | * On entry, LDA specifies the first dimension of A as declared
|
---|
113 | * in the calling (sub) program. LDA must be at least
|
---|
114 | * ( k + 1 ).
|
---|
115 | * Unchanged on exit.
|
---|
116 | *
|
---|
117 | * X - COMPLEX*16 array of dimension at least
|
---|
118 | * ( 1 + ( n - 1 )*abs( INCX ) ).
|
---|
119 | * Before entry, the incremented array X must contain the n
|
---|
120 | * element vector x. On exit, X is overwritten with the
|
---|
121 | * tranformed vector x.
|
---|
122 | *
|
---|
123 | * INCX - INTEGER.
|
---|
124 | * On entry, INCX specifies the increment for the elements of
|
---|
125 | * X. INCX must not be zero.
|
---|
126 | * Unchanged on exit.
|
---|
127 | *
|
---|
128 | * Further Details
|
---|
129 | * ===============
|
---|
130 | *
|
---|
131 | * Level 2 Blas routine.
|
---|
132 | *
|
---|
133 | * -- Written on 22-October-1986.
|
---|
134 | * Jack Dongarra, Argonne National Lab.
|
---|
135 | * Jeremy Du Croz, Nag Central Office.
|
---|
136 | * Sven Hammarling, Nag Central Office.
|
---|
137 | * Richard Hanson, Sandia National Labs.
|
---|
138 | *
|
---|
139 | * =====================================================================
|
---|
140 | *
|
---|
141 | * .. Parameters ..
|
---|
142 | DOUBLE COMPLEX ZERO
|
---|
143 | PARAMETER (ZERO= (0.0D+0,0.0D+0))
|
---|
144 | * ..
|
---|
145 | * .. Local Scalars ..
|
---|
146 | DOUBLE COMPLEX TEMP
|
---|
147 | INTEGER I,INFO,IX,J,JX,KPLUS1,KX,L
|
---|
148 | LOGICAL NOCONJ,NOUNIT
|
---|
149 | * ..
|
---|
150 | * .. External Functions ..
|
---|
151 | LOGICAL LSAME
|
---|
152 | EXTERNAL LSAME
|
---|
153 | * ..
|
---|
154 | * .. External Subroutines ..
|
---|
155 | EXTERNAL XERBLA
|
---|
156 | * ..
|
---|
157 | * .. Intrinsic Functions ..
|
---|
158 | INTRINSIC DCONJG,MAX,MIN
|
---|
159 | * ..
|
---|
160 | *
|
---|
161 | * Test the input parameters.
|
---|
162 | *
|
---|
163 | INFO = 0
|
---|
164 | IF (.NOT.LSAME(UPLO,'U') .AND. .NOT.LSAME(UPLO,'L')) THEN
|
---|
165 | INFO = 1
|
---|
166 | ELSE IF (.NOT.LSAME(TRANS,'N') .AND. .NOT.LSAME(TRANS,'T') .AND.
|
---|
167 | + .NOT.LSAME(TRANS,'C')) THEN
|
---|
168 | INFO = 2
|
---|
169 | ELSE IF (.NOT.LSAME(DIAG,'U') .AND. .NOT.LSAME(DIAG,'N')) THEN
|
---|
170 | INFO = 3
|
---|
171 | ELSE IF (N.LT.0) THEN
|
---|
172 | INFO = 4
|
---|
173 | ELSE IF (K.LT.0) THEN
|
---|
174 | INFO = 5
|
---|
175 | ELSE IF (LDA.LT. (K+1)) THEN
|
---|
176 | INFO = 7
|
---|
177 | ELSE IF (INCX.EQ.0) THEN
|
---|
178 | INFO = 9
|
---|
179 | END IF
|
---|
180 | IF (INFO.NE.0) THEN
|
---|
181 | CALL XERBLA('ZTBMV ',INFO)
|
---|
182 | RETURN
|
---|
183 | END IF
|
---|
184 | *
|
---|
185 | * Quick return if possible.
|
---|
186 | *
|
---|
187 | IF (N.EQ.0) RETURN
|
---|
188 | *
|
---|
189 | NOCONJ = LSAME(TRANS,'T')
|
---|
190 | NOUNIT = LSAME(DIAG,'N')
|
---|
191 | *
|
---|
192 | * Set up the start point in X if the increment is not unity. This
|
---|
193 | * will be ( N - 1 )*INCX too small for descending loops.
|
---|
194 | *
|
---|
195 | IF (INCX.LE.0) THEN
|
---|
196 | KX = 1 - (N-1)*INCX
|
---|
197 | ELSE IF (INCX.NE.1) THEN
|
---|
198 | KX = 1
|
---|
199 | END IF
|
---|
200 | *
|
---|
201 | * Start the operations. In this version the elements of A are
|
---|
202 | * accessed sequentially with one pass through A.
|
---|
203 | *
|
---|
204 | IF (LSAME(TRANS,'N')) THEN
|
---|
205 | *
|
---|
206 | * Form x := A*x.
|
---|
207 | *
|
---|
208 | IF (LSAME(UPLO,'U')) THEN
|
---|
209 | KPLUS1 = K + 1
|
---|
210 | IF (INCX.EQ.1) THEN
|
---|
211 | DO 20 J = 1,N
|
---|
212 | IF (X(J).NE.ZERO) THEN
|
---|
213 | TEMP = X(J)
|
---|
214 | L = KPLUS1 - J
|
---|
215 | DO 10 I = MAX(1,J-K),J - 1
|
---|
216 | X(I) = X(I) + TEMP*A(L+I,J)
|
---|
217 | 10 CONTINUE
|
---|
218 | IF (NOUNIT) X(J) = X(J)*A(KPLUS1,J)
|
---|
219 | END IF
|
---|
220 | 20 CONTINUE
|
---|
221 | ELSE
|
---|
222 | JX = KX
|
---|
223 | DO 40 J = 1,N
|
---|
224 | IF (X(JX).NE.ZERO) THEN
|
---|
225 | TEMP = X(JX)
|
---|
226 | IX = KX
|
---|
227 | L = KPLUS1 - J
|
---|
228 | DO 30 I = MAX(1,J-K),J - 1
|
---|
229 | X(IX) = X(IX) + TEMP*A(L+I,J)
|
---|
230 | IX = IX + INCX
|
---|
231 | 30 CONTINUE
|
---|
232 | IF (NOUNIT) X(JX) = X(JX)*A(KPLUS1,J)
|
---|
233 | END IF
|
---|
234 | JX = JX + INCX
|
---|
235 | IF (J.GT.K) KX = KX + INCX
|
---|
236 | 40 CONTINUE
|
---|
237 | END IF
|
---|
238 | ELSE
|
---|
239 | IF (INCX.EQ.1) THEN
|
---|
240 | DO 60 J = N,1,-1
|
---|
241 | IF (X(J).NE.ZERO) THEN
|
---|
242 | TEMP = X(J)
|
---|
243 | L = 1 - J
|
---|
244 | DO 50 I = MIN(N,J+K),J + 1,-1
|
---|
245 | X(I) = X(I) + TEMP*A(L+I,J)
|
---|
246 | 50 CONTINUE
|
---|
247 | IF (NOUNIT) X(J) = X(J)*A(1,J)
|
---|
248 | END IF
|
---|
249 | 60 CONTINUE
|
---|
250 | ELSE
|
---|
251 | KX = KX + (N-1)*INCX
|
---|
252 | JX = KX
|
---|
253 | DO 80 J = N,1,-1
|
---|
254 | IF (X(JX).NE.ZERO) THEN
|
---|
255 | TEMP = X(JX)
|
---|
256 | IX = KX
|
---|
257 | L = 1 - J
|
---|
258 | DO 70 I = MIN(N,J+K),J + 1,-1
|
---|
259 | X(IX) = X(IX) + TEMP*A(L+I,J)
|
---|
260 | IX = IX - INCX
|
---|
261 | 70 CONTINUE
|
---|
262 | IF (NOUNIT) X(JX) = X(JX)*A(1,J)
|
---|
263 | END IF
|
---|
264 | JX = JX - INCX
|
---|
265 | IF ((N-J).GE.K) KX = KX - INCX
|
---|
266 | 80 CONTINUE
|
---|
267 | END IF
|
---|
268 | END IF
|
---|
269 | ELSE
|
---|
270 | *
|
---|
271 | * Form x := A'*x or x := conjg( A' )*x.
|
---|
272 | *
|
---|
273 | IF (LSAME(UPLO,'U')) THEN
|
---|
274 | KPLUS1 = K + 1
|
---|
275 | IF (INCX.EQ.1) THEN
|
---|
276 | DO 110 J = N,1,-1
|
---|
277 | TEMP = X(J)
|
---|
278 | L = KPLUS1 - J
|
---|
279 | IF (NOCONJ) THEN
|
---|
280 | IF (NOUNIT) TEMP = TEMP*A(KPLUS1,J)
|
---|
281 | DO 90 I = J - 1,MAX(1,J-K),-1
|
---|
282 | TEMP = TEMP + A(L+I,J)*X(I)
|
---|
283 | 90 CONTINUE
|
---|
284 | ELSE
|
---|
285 | IF (NOUNIT) TEMP = TEMP*DCONJG(A(KPLUS1,J))
|
---|
286 | DO 100 I = J - 1,MAX(1,J-K),-1
|
---|
287 | TEMP = TEMP + DCONJG(A(L+I,J))*X(I)
|
---|
288 | 100 CONTINUE
|
---|
289 | END IF
|
---|
290 | X(J) = TEMP
|
---|
291 | 110 CONTINUE
|
---|
292 | ELSE
|
---|
293 | KX = KX + (N-1)*INCX
|
---|
294 | JX = KX
|
---|
295 | DO 140 J = N,1,-1
|
---|
296 | TEMP = X(JX)
|
---|
297 | KX = KX - INCX
|
---|
298 | IX = KX
|
---|
299 | L = KPLUS1 - J
|
---|
300 | IF (NOCONJ) THEN
|
---|
301 | IF (NOUNIT) TEMP = TEMP*A(KPLUS1,J)
|
---|
302 | DO 120 I = J - 1,MAX(1,J-K),-1
|
---|
303 | TEMP = TEMP + A(L+I,J)*X(IX)
|
---|
304 | IX = IX - INCX
|
---|
305 | 120 CONTINUE
|
---|
306 | ELSE
|
---|
307 | IF (NOUNIT) TEMP = TEMP*DCONJG(A(KPLUS1,J))
|
---|
308 | DO 130 I = J - 1,MAX(1,J-K),-1
|
---|
309 | TEMP = TEMP + DCONJG(A(L+I,J))*X(IX)
|
---|
310 | IX = IX - INCX
|
---|
311 | 130 CONTINUE
|
---|
312 | END IF
|
---|
313 | X(JX) = TEMP
|
---|
314 | JX = JX - INCX
|
---|
315 | 140 CONTINUE
|
---|
316 | END IF
|
---|
317 | ELSE
|
---|
318 | IF (INCX.EQ.1) THEN
|
---|
319 | DO 170 J = 1,N
|
---|
320 | TEMP = X(J)
|
---|
321 | L = 1 - J
|
---|
322 | IF (NOCONJ) THEN
|
---|
323 | IF (NOUNIT) TEMP = TEMP*A(1,J)
|
---|
324 | DO 150 I = J + 1,MIN(N,J+K)
|
---|
325 | TEMP = TEMP + A(L+I,J)*X(I)
|
---|
326 | 150 CONTINUE
|
---|
327 | ELSE
|
---|
328 | IF (NOUNIT) TEMP = TEMP*DCONJG(A(1,J))
|
---|
329 | DO 160 I = J + 1,MIN(N,J+K)
|
---|
330 | TEMP = TEMP + DCONJG(A(L+I,J))*X(I)
|
---|
331 | 160 CONTINUE
|
---|
332 | END IF
|
---|
333 | X(J) = TEMP
|
---|
334 | 170 CONTINUE
|
---|
335 | ELSE
|
---|
336 | JX = KX
|
---|
337 | DO 200 J = 1,N
|
---|
338 | TEMP = X(JX)
|
---|
339 | KX = KX + INCX
|
---|
340 | IX = KX
|
---|
341 | L = 1 - J
|
---|
342 | IF (NOCONJ) THEN
|
---|
343 | IF (NOUNIT) TEMP = TEMP*A(1,J)
|
---|
344 | DO 180 I = J + 1,MIN(N,J+K)
|
---|
345 | TEMP = TEMP + A(L+I,J)*X(IX)
|
---|
346 | IX = IX + INCX
|
---|
347 | 180 CONTINUE
|
---|
348 | ELSE
|
---|
349 | IF (NOUNIT) TEMP = TEMP*DCONJG(A(1,J))
|
---|
350 | DO 190 I = J + 1,MIN(N,J+K)
|
---|
351 | TEMP = TEMP + DCONJG(A(L+I,J))*X(IX)
|
---|
352 | IX = IX + INCX
|
---|
353 | 190 CONTINUE
|
---|
354 | END IF
|
---|
355 | X(JX) = TEMP
|
---|
356 | JX = JX + INCX
|
---|
357 | 200 CONTINUE
|
---|
358 | END IF
|
---|
359 | END IF
|
---|
360 | END IF
|
---|
361 | *
|
---|
362 | RETURN
|
---|
363 | *
|
---|
364 | * End of ZTBMV .
|
---|
365 | *
|
---|
366 | END
|
---|