source: pacpussensors/trunk/Vislab/lib3dv-1.2.0/lib3dv/eigen/doc/AsciiQuickReference.txt@ 141

Last change on this file since 141 was 136, checked in by ldecherf, 8 years ago

Doc

File size: 9.5 KB
Line 
1// A simple quickref for Eigen. Add anything that's missing.
2// Main author: Keir Mierle
3
4#include <Eigen/Dense>
5
6Matrix<double, 3, 3> A; // Fixed rows and cols. Same as Matrix3d.
7Matrix<double, 3, Dynamic> B; // Fixed rows, dynamic cols.
8Matrix<double, Dynamic, Dynamic> C; // Full dynamic. Same as MatrixXd.
9Matrix<double, 3, 3, RowMajor> E; // Row major; default is column-major.
10Matrix3f P, Q, R; // 3x3 float matrix.
11Vector3f x, y, z; // 3x1 float matrix.
12RowVector3f a, b, c; // 1x3 float matrix.
13VectorXd v; // Dynamic column vector of doubles
14double s;
15
16// Basic usage
17// Eigen // Matlab // comments
18x.size() // length(x) // vector size
19C.rows() // size(C,1) // number of rows
20C.cols() // size(C,2) // number of columns
21x(i) // x(i+1) // Matlab is 1-based
22C(i,j) // C(i+1,j+1) //
23
24A.resize(4, 4); // Runtime error if assertions are on.
25B.resize(4, 9); // Runtime error if assertions are on.
26A.resize(3, 3); // Ok; size didn't change.
27B.resize(3, 9); // Ok; only dynamic cols changed.
28
29A << 1, 2, 3, // Initialize A. The elements can also be
30 4, 5, 6, // matrices, which are stacked along cols
31 7, 8, 9; // and then the rows are stacked.
32B << A, A, A; // B is three horizontally stacked A's.
33A.fill(10); // Fill A with all 10's.
34
35// Eigen // Matlab
36MatrixXd::Identity(rows,cols) // eye(rows,cols)
37C.setIdentity(rows,cols) // C = eye(rows,cols)
38MatrixXd::Zero(rows,cols) // zeros(rows,cols)
39C.setZero(rows,cols) // C = ones(rows,cols)
40MatrixXd::Ones(rows,cols) // ones(rows,cols)
41C.setOnes(rows,cols) // C = ones(rows,cols)
42MatrixXd::Random(rows,cols) // rand(rows,cols)*2-1 // MatrixXd::Random returns uniform random numbers in (-1, 1).
43C.setRandom(rows,cols) // C = rand(rows,cols)*2-1
44VectorXd::LinSpaced(size,low,high) // linspace(low,high,size)'
45v.setLinSpaced(size,low,high) // v = linspace(low,high,size)'
46
47
48// Matrix slicing and blocks. All expressions listed here are read/write.
49// Templated size versions are faster. Note that Matlab is 1-based (a size N
50// vector is x(1)...x(N)).
51// Eigen // Matlab
52x.head(n) // x(1:n)
53x.head<n>() // x(1:n)
54x.tail(n) // x(end - n + 1: end)
55x.tail<n>() // x(end - n + 1: end)
56x.segment(i, n) // x(i+1 : i+n)
57x.segment<n>(i) // x(i+1 : i+n)
58P.block(i, j, rows, cols) // P(i+1 : i+rows, j+1 : j+cols)
59P.block<rows, cols>(i, j) // P(i+1 : i+rows, j+1 : j+cols)
60P.row(i) // P(i+1, :)
61P.col(j) // P(:, j+1)
62P.leftCols<cols>() // P(:, 1:cols)
63P.leftCols(cols) // P(:, 1:cols)
64P.middleCols<cols>(j) // P(:, j+1:j+cols)
65P.middleCols(j, cols) // P(:, j+1:j+cols)
66P.rightCols<cols>() // P(:, end-cols+1:end)
67P.rightCols(cols) // P(:, end-cols+1:end)
68P.topRows<rows>() // P(1:rows, :)
69P.topRows(rows) // P(1:rows, :)
70P.middleRows<rows>(i) // P(i+1:i+rows, :)
71P.middleRows(i, rows) // P(i+1:i+rows, :)
72P.bottomRows<rows>() // P(end-rows+1:end, :)
73P.bottomRows(rows) // P(end-rows+1:end, :)
74P.topLeftCorner(rows, cols) // P(1:rows, 1:cols)
75P.topRightCorner(rows, cols) // P(1:rows, end-cols+1:end)
76P.bottomLeftCorner(rows, cols) // P(end-rows+1:end, 1:cols)
77P.bottomRightCorner(rows, cols) // P(end-rows+1:end, end-cols+1:end)
78P.topLeftCorner<rows,cols>() // P(1:rows, 1:cols)
79P.topRightCorner<rows,cols>() // P(1:rows, end-cols+1:end)
80P.bottomLeftCorner<rows,cols>() // P(end-rows+1:end, 1:cols)
81P.bottomRightCorner<rows,cols>() // P(end-rows+1:end, end-cols+1:end)
82
83// Of particular note is Eigen's swap function which is highly optimized.
84// Eigen // Matlab
85R.row(i) = P.col(j); // R(i, :) = P(:, i)
86R.col(j1).swap(mat1.col(j2)); // R(:, [j1 j2]) = R(:, [j2, j1])
87
88// Views, transpose, etc; all read-write except for .adjoint().
89// Eigen // Matlab
90R.adjoint() // R'
91R.transpose() // R.' or conj(R')
92R.diagonal() // diag(R)
93x.asDiagonal() // diag(x)
94R.transpose().colwise().reverse(); // rot90(R)
95R.conjugate() // conj(R)
96
97// All the same as Matlab, but matlab doesn't have *= style operators.
98// Matrix-vector. Matrix-matrix. Matrix-scalar.
99y = M*x; R = P*Q; R = P*s;
100a = b*M; R = P - Q; R = s*P;
101a *= M; R = P + Q; R = P/s;
102 R *= Q; R = s*P;
103 R += Q; R *= s;
104 R -= Q; R /= s;
105
106// Vectorized operations on each element independently
107// Eigen // Matlab
108R = P.cwiseProduct(Q); // R = P .* Q
109R = P.array() * s.array();// R = P .* s
110R = P.cwiseQuotient(Q); // R = P ./ Q
111R = P.array() / Q.array();// R = P ./ Q
112R = P.array() + s.array();// R = P + s
113R = P.array() - s.array();// R = P - s
114R.array() += s; // R = R + s
115R.array() -= s; // R = R - s
116R.array() < Q.array(); // R < Q
117R.array() <= Q.array(); // R <= Q
118R.cwiseInverse(); // 1 ./ P
119R.array().inverse(); // 1 ./ P
120R.array().sin() // sin(P)
121R.array().cos() // cos(P)
122R.array().pow(s) // P .^ s
123R.array().square() // P .^ 2
124R.array().cube() // P .^ 3
125R.cwiseSqrt() // sqrt(P)
126R.array().sqrt() // sqrt(P)
127R.array().exp() // exp(P)
128R.array().log() // log(P)
129R.cwiseMax(P) // max(R, P)
130R.array().max(P.array()) // max(R, P)
131R.cwiseMin(P) // min(R, P)
132R.array().min(P.array()) // min(R, P)
133R.cwiseAbs() // abs(P)
134R.array().abs() // abs(P)
135R.cwiseAbs2() // abs(P.^2)
136R.array().abs2() // abs(P.^2)
137(R.array() < s).select(P,Q); // (R < s ? P : Q)
138
139// Reductions.
140int r, c;
141// Eigen // Matlab
142R.minCoeff() // min(R(:))
143R.maxCoeff() // max(R(:))
144s = R.minCoeff(&r, &c) // [s, i] = min(R(:)); [r, c] = ind2sub(size(R), i);
145s = R.maxCoeff(&r, &c) // [s, i] = max(R(:)); [r, c] = ind2sub(size(R), i);
146R.sum() // sum(R(:))
147R.colwise().sum() // sum(R)
148R.rowwise().sum() // sum(R, 2) or sum(R')'
149R.prod() // prod(R(:))
150R.colwise().prod() // prod(R)
151R.rowwise().prod() // prod(R, 2) or prod(R')'
152R.trace() // trace(R)
153R.all() // all(R(:))
154R.colwise().all() // all(R)
155R.rowwise().all() // all(R, 2)
156R.any() // any(R(:))
157R.colwise().any() // any(R)
158R.rowwise().any() // any(R, 2)
159
160// Dot products, norms, etc.
161// Eigen // Matlab
162x.norm() // norm(x). Note that norm(R) doesn't work in Eigen.
163x.squaredNorm() // dot(x, x) Note the equivalence is not true for complex
164x.dot(y) // dot(x, y)
165x.cross(y) // cross(x, y) Requires #include <Eigen/Geometry>
166
167//// Type conversion
168// Eigen // Matlab
169A.cast<double>(); // double(A)
170A.cast<float>(); // single(A)
171A.cast<int>(); // int32(A)
172A.real(); // real(A)
173A.imag(); // imag(A)
174// if the original type equals destination type, no work is done
175
176// Note that for most operations Eigen requires all operands to have the same type:
177MatrixXf F = MatrixXf::Zero(3,3);
178A += F; // illegal in Eigen. In Matlab A = A+F is allowed
179A += F.cast<double>(); // F converted to double and then added (generally, conversion happens on-the-fly)
180
181// Eigen can map existing memory into Eigen matrices.
182float array[3];
183Vector3f::Map(array).fill(10); // create a temporary Map over array and sets entries to 10
184int data[4] = {1, 2, 3, 4};
185Matrix2i mat2x2(data); // copies data into mat2x2
186Matrix2i::Map(data) = 2*mat2x2; // overwrite elements of data with 2*mat2x2
187MatrixXi::Map(data, 2, 2) += mat2x2; // adds mat2x2 to elements of data (alternative syntax if size is not know at compile time)
188
189// Solve Ax = b. Result stored in x. Matlab: x = A \ b.
190x = A.ldlt().solve(b)); // A sym. p.s.d. #include <Eigen/Cholesky>
191x = A.llt() .solve(b)); // A sym. p.d. #include <Eigen/Cholesky>
192x = A.lu() .solve(b)); // Stable and fast. #include <Eigen/LU>
193x = A.qr() .solve(b)); // No pivoting. #include <Eigen/QR>
194x = A.svd() .solve(b)); // Stable, slowest. #include <Eigen/SVD>
195// .ldlt() -> .matrixL() and .matrixD()
196// .llt() -> .matrixL()
197// .lu() -> .matrixL() and .matrixU()
198// .qr() -> .matrixQ() and .matrixR()
199// .svd() -> .matrixU(), .singularValues(), and .matrixV()
200
201// Eigenvalue problems
202// Eigen // Matlab
203A.eigenvalues(); // eig(A);
204EigenSolver<Matrix3d> eig(A); // [vec val] = eig(A)
205eig.eigenvalues(); // diag(val)
206eig.eigenvectors(); // vec
207// For self-adjoint matrices use SelfAdjointEigenSolver<>
Note: See TracBrowser for help on using the repository browser.