1 | // A simple quickref for Eigen. Add anything that's missing.
|
---|
2 | // Main author: Keir Mierle
|
---|
3 |
|
---|
4 | #include <Eigen/Dense>
|
---|
5 |
|
---|
6 | Matrix<double, 3, 3> A; // Fixed rows and cols. Same as Matrix3d.
|
---|
7 | Matrix<double, 3, Dynamic> B; // Fixed rows, dynamic cols.
|
---|
8 | Matrix<double, Dynamic, Dynamic> C; // Full dynamic. Same as MatrixXd.
|
---|
9 | Matrix<double, 3, 3, RowMajor> E; // Row major; default is column-major.
|
---|
10 | Matrix3f P, Q, R; // 3x3 float matrix.
|
---|
11 | Vector3f x, y, z; // 3x1 float matrix.
|
---|
12 | RowVector3f a, b, c; // 1x3 float matrix.
|
---|
13 | VectorXd v; // Dynamic column vector of doubles
|
---|
14 | double s;
|
---|
15 |
|
---|
16 | // Basic usage
|
---|
17 | // Eigen // Matlab // comments
|
---|
18 | x.size() // length(x) // vector size
|
---|
19 | C.rows() // size(C,1) // number of rows
|
---|
20 | C.cols() // size(C,2) // number of columns
|
---|
21 | x(i) // x(i+1) // Matlab is 1-based
|
---|
22 | C(i,j) // C(i+1,j+1) //
|
---|
23 |
|
---|
24 | A.resize(4, 4); // Runtime error if assertions are on.
|
---|
25 | B.resize(4, 9); // Runtime error if assertions are on.
|
---|
26 | A.resize(3, 3); // Ok; size didn't change.
|
---|
27 | B.resize(3, 9); // Ok; only dynamic cols changed.
|
---|
28 |
|
---|
29 | A << 1, 2, 3, // Initialize A. The elements can also be
|
---|
30 | 4, 5, 6, // matrices, which are stacked along cols
|
---|
31 | 7, 8, 9; // and then the rows are stacked.
|
---|
32 | B << A, A, A; // B is three horizontally stacked A's.
|
---|
33 | A.fill(10); // Fill A with all 10's.
|
---|
34 |
|
---|
35 | // Eigen // Matlab
|
---|
36 | MatrixXd::Identity(rows,cols) // eye(rows,cols)
|
---|
37 | C.setIdentity(rows,cols) // C = eye(rows,cols)
|
---|
38 | MatrixXd::Zero(rows,cols) // zeros(rows,cols)
|
---|
39 | C.setZero(rows,cols) // C = ones(rows,cols)
|
---|
40 | MatrixXd::Ones(rows,cols) // ones(rows,cols)
|
---|
41 | C.setOnes(rows,cols) // C = ones(rows,cols)
|
---|
42 | MatrixXd::Random(rows,cols) // rand(rows,cols)*2-1 // MatrixXd::Random returns uniform random numbers in (-1, 1).
|
---|
43 | C.setRandom(rows,cols) // C = rand(rows,cols)*2-1
|
---|
44 | VectorXd::LinSpaced(size,low,high) // linspace(low,high,size)'
|
---|
45 | v.setLinSpaced(size,low,high) // v = linspace(low,high,size)'
|
---|
46 |
|
---|
47 |
|
---|
48 | // Matrix slicing and blocks. All expressions listed here are read/write.
|
---|
49 | // Templated size versions are faster. Note that Matlab is 1-based (a size N
|
---|
50 | // vector is x(1)...x(N)).
|
---|
51 | // Eigen // Matlab
|
---|
52 | x.head(n) // x(1:n)
|
---|
53 | x.head<n>() // x(1:n)
|
---|
54 | x.tail(n) // x(end - n + 1: end)
|
---|
55 | x.tail<n>() // x(end - n + 1: end)
|
---|
56 | x.segment(i, n) // x(i+1 : i+n)
|
---|
57 | x.segment<n>(i) // x(i+1 : i+n)
|
---|
58 | P.block(i, j, rows, cols) // P(i+1 : i+rows, j+1 : j+cols)
|
---|
59 | P.block<rows, cols>(i, j) // P(i+1 : i+rows, j+1 : j+cols)
|
---|
60 | P.row(i) // P(i+1, :)
|
---|
61 | P.col(j) // P(:, j+1)
|
---|
62 | P.leftCols<cols>() // P(:, 1:cols)
|
---|
63 | P.leftCols(cols) // P(:, 1:cols)
|
---|
64 | P.middleCols<cols>(j) // P(:, j+1:j+cols)
|
---|
65 | P.middleCols(j, cols) // P(:, j+1:j+cols)
|
---|
66 | P.rightCols<cols>() // P(:, end-cols+1:end)
|
---|
67 | P.rightCols(cols) // P(:, end-cols+1:end)
|
---|
68 | P.topRows<rows>() // P(1:rows, :)
|
---|
69 | P.topRows(rows) // P(1:rows, :)
|
---|
70 | P.middleRows<rows>(i) // P(i+1:i+rows, :)
|
---|
71 | P.middleRows(i, rows) // P(i+1:i+rows, :)
|
---|
72 | P.bottomRows<rows>() // P(end-rows+1:end, :)
|
---|
73 | P.bottomRows(rows) // P(end-rows+1:end, :)
|
---|
74 | P.topLeftCorner(rows, cols) // P(1:rows, 1:cols)
|
---|
75 | P.topRightCorner(rows, cols) // P(1:rows, end-cols+1:end)
|
---|
76 | P.bottomLeftCorner(rows, cols) // P(end-rows+1:end, 1:cols)
|
---|
77 | P.bottomRightCorner(rows, cols) // P(end-rows+1:end, end-cols+1:end)
|
---|
78 | P.topLeftCorner<rows,cols>() // P(1:rows, 1:cols)
|
---|
79 | P.topRightCorner<rows,cols>() // P(1:rows, end-cols+1:end)
|
---|
80 | P.bottomLeftCorner<rows,cols>() // P(end-rows+1:end, 1:cols)
|
---|
81 | P.bottomRightCorner<rows,cols>() // P(end-rows+1:end, end-cols+1:end)
|
---|
82 |
|
---|
83 | // Of particular note is Eigen's swap function which is highly optimized.
|
---|
84 | // Eigen // Matlab
|
---|
85 | R.row(i) = P.col(j); // R(i, :) = P(:, i)
|
---|
86 | R.col(j1).swap(mat1.col(j2)); // R(:, [j1 j2]) = R(:, [j2, j1])
|
---|
87 |
|
---|
88 | // Views, transpose, etc; all read-write except for .adjoint().
|
---|
89 | // Eigen // Matlab
|
---|
90 | R.adjoint() // R'
|
---|
91 | R.transpose() // R.' or conj(R')
|
---|
92 | R.diagonal() // diag(R)
|
---|
93 | x.asDiagonal() // diag(x)
|
---|
94 | R.transpose().colwise().reverse(); // rot90(R)
|
---|
95 | R.conjugate() // conj(R)
|
---|
96 |
|
---|
97 | // All the same as Matlab, but matlab doesn't have *= style operators.
|
---|
98 | // Matrix-vector. Matrix-matrix. Matrix-scalar.
|
---|
99 | y = M*x; R = P*Q; R = P*s;
|
---|
100 | a = b*M; R = P - Q; R = s*P;
|
---|
101 | a *= M; R = P + Q; R = P/s;
|
---|
102 | R *= Q; R = s*P;
|
---|
103 | R += Q; R *= s;
|
---|
104 | R -= Q; R /= s;
|
---|
105 |
|
---|
106 | // Vectorized operations on each element independently
|
---|
107 | // Eigen // Matlab
|
---|
108 | R = P.cwiseProduct(Q); // R = P .* Q
|
---|
109 | R = P.array() * s.array();// R = P .* s
|
---|
110 | R = P.cwiseQuotient(Q); // R = P ./ Q
|
---|
111 | R = P.array() / Q.array();// R = P ./ Q
|
---|
112 | R = P.array() + s.array();// R = P + s
|
---|
113 | R = P.array() - s.array();// R = P - s
|
---|
114 | R.array() += s; // R = R + s
|
---|
115 | R.array() -= s; // R = R - s
|
---|
116 | R.array() < Q.array(); // R < Q
|
---|
117 | R.array() <= Q.array(); // R <= Q
|
---|
118 | R.cwiseInverse(); // 1 ./ P
|
---|
119 | R.array().inverse(); // 1 ./ P
|
---|
120 | R.array().sin() // sin(P)
|
---|
121 | R.array().cos() // cos(P)
|
---|
122 | R.array().pow(s) // P .^ s
|
---|
123 | R.array().square() // P .^ 2
|
---|
124 | R.array().cube() // P .^ 3
|
---|
125 | R.cwiseSqrt() // sqrt(P)
|
---|
126 | R.array().sqrt() // sqrt(P)
|
---|
127 | R.array().exp() // exp(P)
|
---|
128 | R.array().log() // log(P)
|
---|
129 | R.cwiseMax(P) // max(R, P)
|
---|
130 | R.array().max(P.array()) // max(R, P)
|
---|
131 | R.cwiseMin(P) // min(R, P)
|
---|
132 | R.array().min(P.array()) // min(R, P)
|
---|
133 | R.cwiseAbs() // abs(P)
|
---|
134 | R.array().abs() // abs(P)
|
---|
135 | R.cwiseAbs2() // abs(P.^2)
|
---|
136 | R.array().abs2() // abs(P.^2)
|
---|
137 | (R.array() < s).select(P,Q); // (R < s ? P : Q)
|
---|
138 |
|
---|
139 | // Reductions.
|
---|
140 | int r, c;
|
---|
141 | // Eigen // Matlab
|
---|
142 | R.minCoeff() // min(R(:))
|
---|
143 | R.maxCoeff() // max(R(:))
|
---|
144 | s = R.minCoeff(&r, &c) // [s, i] = min(R(:)); [r, c] = ind2sub(size(R), i);
|
---|
145 | s = R.maxCoeff(&r, &c) // [s, i] = max(R(:)); [r, c] = ind2sub(size(R), i);
|
---|
146 | R.sum() // sum(R(:))
|
---|
147 | R.colwise().sum() // sum(R)
|
---|
148 | R.rowwise().sum() // sum(R, 2) or sum(R')'
|
---|
149 | R.prod() // prod(R(:))
|
---|
150 | R.colwise().prod() // prod(R)
|
---|
151 | R.rowwise().prod() // prod(R, 2) or prod(R')'
|
---|
152 | R.trace() // trace(R)
|
---|
153 | R.all() // all(R(:))
|
---|
154 | R.colwise().all() // all(R)
|
---|
155 | R.rowwise().all() // all(R, 2)
|
---|
156 | R.any() // any(R(:))
|
---|
157 | R.colwise().any() // any(R)
|
---|
158 | R.rowwise().any() // any(R, 2)
|
---|
159 |
|
---|
160 | // Dot products, norms, etc.
|
---|
161 | // Eigen // Matlab
|
---|
162 | x.norm() // norm(x). Note that norm(R) doesn't work in Eigen.
|
---|
163 | x.squaredNorm() // dot(x, x) Note the equivalence is not true for complex
|
---|
164 | x.dot(y) // dot(x, y)
|
---|
165 | x.cross(y) // cross(x, y) Requires #include <Eigen/Geometry>
|
---|
166 |
|
---|
167 | //// Type conversion
|
---|
168 | // Eigen // Matlab
|
---|
169 | A.cast<double>(); // double(A)
|
---|
170 | A.cast<float>(); // single(A)
|
---|
171 | A.cast<int>(); // int32(A)
|
---|
172 | A.real(); // real(A)
|
---|
173 | A.imag(); // imag(A)
|
---|
174 | // if the original type equals destination type, no work is done
|
---|
175 |
|
---|
176 | // Note that for most operations Eigen requires all operands to have the same type:
|
---|
177 | MatrixXf F = MatrixXf::Zero(3,3);
|
---|
178 | A += F; // illegal in Eigen. In Matlab A = A+F is allowed
|
---|
179 | A += F.cast<double>(); // F converted to double and then added (generally, conversion happens on-the-fly)
|
---|
180 |
|
---|
181 | // Eigen can map existing memory into Eigen matrices.
|
---|
182 | float array[3];
|
---|
183 | Vector3f::Map(array).fill(10); // create a temporary Map over array and sets entries to 10
|
---|
184 | int data[4] = {1, 2, 3, 4};
|
---|
185 | Matrix2i mat2x2(data); // copies data into mat2x2
|
---|
186 | Matrix2i::Map(data) = 2*mat2x2; // overwrite elements of data with 2*mat2x2
|
---|
187 | MatrixXi::Map(data, 2, 2) += mat2x2; // adds mat2x2 to elements of data (alternative syntax if size is not know at compile time)
|
---|
188 |
|
---|
189 | // Solve Ax = b. Result stored in x. Matlab: x = A \ b.
|
---|
190 | x = A.ldlt().solve(b)); // A sym. p.s.d. #include <Eigen/Cholesky>
|
---|
191 | x = A.llt() .solve(b)); // A sym. p.d. #include <Eigen/Cholesky>
|
---|
192 | x = A.lu() .solve(b)); // Stable and fast. #include <Eigen/LU>
|
---|
193 | x = A.qr() .solve(b)); // No pivoting. #include <Eigen/QR>
|
---|
194 | x = A.svd() .solve(b)); // Stable, slowest. #include <Eigen/SVD>
|
---|
195 | // .ldlt() -> .matrixL() and .matrixD()
|
---|
196 | // .llt() -> .matrixL()
|
---|
197 | // .lu() -> .matrixL() and .matrixU()
|
---|
198 | // .qr() -> .matrixQ() and .matrixR()
|
---|
199 | // .svd() -> .matrixU(), .singularValues(), and .matrixV()
|
---|
200 |
|
---|
201 | // Eigenvalue problems
|
---|
202 | // Eigen // Matlab
|
---|
203 | A.eigenvalues(); // eig(A);
|
---|
204 | EigenSolver<Matrix3d> eig(A); // [vec val] = eig(A)
|
---|
205 | eig.eigenvalues(); // diag(val)
|
---|
206 | eig.eigenvectors(); // vec
|
---|
207 | // For self-adjoint matrices use SelfAdjointEigenSolver<>
|
---|