1 | namespace Eigen {
|
---|
2 |
|
---|
3 | /** \eigenManualPage TopicLinearAlgebraDecompositions Catalogue of dense decompositions
|
---|
4 |
|
---|
5 | This page presents a catalogue of the dense matrix decompositions offered by Eigen.
|
---|
6 | For an introduction on linear solvers and decompositions, check this \link TutorialLinearAlgebra page \endlink.
|
---|
7 |
|
---|
8 | \section TopicLinAlgBigTable Catalogue of decompositions offered by Eigen
|
---|
9 |
|
---|
10 | <table class="manual-vl">
|
---|
11 | <tr>
|
---|
12 | <th class="meta"></th>
|
---|
13 | <th class="meta" colspan="5">Generic information, not Eigen-specific</th>
|
---|
14 | <th class="meta" colspan="3">Eigen-specific</th>
|
---|
15 | </tr>
|
---|
16 |
|
---|
17 | <tr>
|
---|
18 | <th>Decomposition</th>
|
---|
19 | <th>Requirements on the matrix</th>
|
---|
20 | <th>Speed</th>
|
---|
21 | <th>Algorithm reliability and accuracy</th>
|
---|
22 | <th>Rank-revealing</th>
|
---|
23 | <th>Allows to compute (besides linear solving)</th>
|
---|
24 | <th>Linear solver provided by Eigen</th>
|
---|
25 | <th>Maturity of Eigen's implementation</th>
|
---|
26 | <th>Optimizations</th>
|
---|
27 | </tr>
|
---|
28 |
|
---|
29 | <tr>
|
---|
30 | <td>PartialPivLU</td>
|
---|
31 | <td>Invertible</td>
|
---|
32 | <td>Fast</td>
|
---|
33 | <td>Depends on condition number</td>
|
---|
34 | <td>-</td>
|
---|
35 | <td>-</td>
|
---|
36 | <td>Yes</td>
|
---|
37 | <td>Excellent</td>
|
---|
38 | <td>Blocking, Implicit MT</td>
|
---|
39 | </tr>
|
---|
40 |
|
---|
41 | <tr class="alt">
|
---|
42 | <td>FullPivLU</td>
|
---|
43 | <td>-</td>
|
---|
44 | <td>Slow</td>
|
---|
45 | <td>Proven</td>
|
---|
46 | <td>Yes</td>
|
---|
47 | <td>-</td>
|
---|
48 | <td>Yes</td>
|
---|
49 | <td>Excellent</td>
|
---|
50 | <td>-</td>
|
---|
51 | </tr>
|
---|
52 |
|
---|
53 | <tr>
|
---|
54 | <td>HouseholderQR</td>
|
---|
55 | <td>-</td>
|
---|
56 | <td>Fast</td>
|
---|
57 | <td>Depends on condition number</td>
|
---|
58 | <td>-</td>
|
---|
59 | <td>Orthogonalization</td>
|
---|
60 | <td>Yes</td>
|
---|
61 | <td>Excellent</td>
|
---|
62 | <td>Blocking</td>
|
---|
63 | </tr>
|
---|
64 |
|
---|
65 | <tr class="alt">
|
---|
66 | <td>ColPivHouseholderQR</td>
|
---|
67 | <td>-</td>
|
---|
68 | <td>Fast</td>
|
---|
69 | <td>Good</td>
|
---|
70 | <td>Yes</td>
|
---|
71 | <td>Orthogonalization</td>
|
---|
72 | <td>Yes</td>
|
---|
73 | <td>Excellent</td>
|
---|
74 | <td><em>Soon: blocking</em></td>
|
---|
75 | </tr>
|
---|
76 |
|
---|
77 | <tr>
|
---|
78 | <td>FullPivHouseholderQR</td>
|
---|
79 | <td>-</td>
|
---|
80 | <td>Slow</td>
|
---|
81 | <td>Proven</td>
|
---|
82 | <td>Yes</td>
|
---|
83 | <td>Orthogonalization</td>
|
---|
84 | <td>Yes</td>
|
---|
85 | <td>Average</td>
|
---|
86 | <td>-</td>
|
---|
87 | </tr>
|
---|
88 |
|
---|
89 | <tr class="alt">
|
---|
90 | <td>LLT</td>
|
---|
91 | <td>Positive definite</td>
|
---|
92 | <td>Very fast</td>
|
---|
93 | <td>Depends on condition number</td>
|
---|
94 | <td>-</td>
|
---|
95 | <td>-</td>
|
---|
96 | <td>Yes</td>
|
---|
97 | <td>Excellent</td>
|
---|
98 | <td>Blocking</td>
|
---|
99 | </tr>
|
---|
100 |
|
---|
101 | <tr>
|
---|
102 | <td>LDLT</td>
|
---|
103 | <td>Positive or negative semidefinite<sup><a href="#note1">1</a></sup></td>
|
---|
104 | <td>Very fast</td>
|
---|
105 | <td>Good</td>
|
---|
106 | <td>-</td>
|
---|
107 | <td>-</td>
|
---|
108 | <td>Yes</td>
|
---|
109 | <td>Excellent</td>
|
---|
110 | <td><em>Soon: blocking</em></td>
|
---|
111 | </tr>
|
---|
112 |
|
---|
113 | <tr><th class="inter" colspan="9">\n Singular values and eigenvalues decompositions</th></tr>
|
---|
114 |
|
---|
115 | <tr>
|
---|
116 | <td>JacobiSVD (two-sided)</td>
|
---|
117 | <td>-</td>
|
---|
118 | <td>Slow (but fast for small matrices)</td>
|
---|
119 | <td>Excellent-Proven<sup><a href="#note3">3</a></sup></td>
|
---|
120 | <td>Yes</td>
|
---|
121 | <td>Singular values/vectors, least squares</td>
|
---|
122 | <td>Yes (and does least squares)</td>
|
---|
123 | <td>Excellent</td>
|
---|
124 | <td>R-SVD</td>
|
---|
125 | </tr>
|
---|
126 |
|
---|
127 | <tr class="alt">
|
---|
128 | <td>SelfAdjointEigenSolver</td>
|
---|
129 | <td>Self-adjoint</td>
|
---|
130 | <td>Fast-average<sup><a href="#note2">2</a></sup></td>
|
---|
131 | <td>Good</td>
|
---|
132 | <td>Yes</td>
|
---|
133 | <td>Eigenvalues/vectors</td>
|
---|
134 | <td>-</td>
|
---|
135 | <td>Good</td>
|
---|
136 | <td><em>Closed forms for 2x2 and 3x3</em></td>
|
---|
137 | </tr>
|
---|
138 |
|
---|
139 | <tr>
|
---|
140 | <td>ComplexEigenSolver</td>
|
---|
141 | <td>Square</td>
|
---|
142 | <td>Slow-very slow<sup><a href="#note2">2</a></sup></td>
|
---|
143 | <td>Depends on condition number</td>
|
---|
144 | <td>Yes</td>
|
---|
145 | <td>Eigenvalues/vectors</td>
|
---|
146 | <td>-</td>
|
---|
147 | <td>Average</td>
|
---|
148 | <td>-</td>
|
---|
149 | </tr>
|
---|
150 |
|
---|
151 | <tr class="alt">
|
---|
152 | <td>EigenSolver</td>
|
---|
153 | <td>Square and real</td>
|
---|
154 | <td>Average-slow<sup><a href="#note2">2</a></sup></td>
|
---|
155 | <td>Depends on condition number</td>
|
---|
156 | <td>Yes</td>
|
---|
157 | <td>Eigenvalues/vectors</td>
|
---|
158 | <td>-</td>
|
---|
159 | <td>Average</td>
|
---|
160 | <td>-</td>
|
---|
161 | </tr>
|
---|
162 |
|
---|
163 | <tr>
|
---|
164 | <td>GeneralizedSelfAdjointEigenSolver</td>
|
---|
165 | <td>Square</td>
|
---|
166 | <td>Fast-average<sup><a href="#note2">2</a></sup></td>
|
---|
167 | <td>Depends on condition number</td>
|
---|
168 | <td>-</td>
|
---|
169 | <td>Generalized eigenvalues/vectors</td>
|
---|
170 | <td>-</td>
|
---|
171 | <td>Good</td>
|
---|
172 | <td>-</td>
|
---|
173 | </tr>
|
---|
174 |
|
---|
175 | <tr><th class="inter" colspan="9">\n Helper decompositions</th></tr>
|
---|
176 |
|
---|
177 | <tr>
|
---|
178 | <td>RealSchur</td>
|
---|
179 | <td>Square and real</td>
|
---|
180 | <td>Average-slow<sup><a href="#note2">2</a></sup></td>
|
---|
181 | <td>Depends on condition number</td>
|
---|
182 | <td>Yes</td>
|
---|
183 | <td>-</td>
|
---|
184 | <td>-</td>
|
---|
185 | <td>Average</td>
|
---|
186 | <td>-</td>
|
---|
187 | </tr>
|
---|
188 |
|
---|
189 | <tr class="alt">
|
---|
190 | <td>ComplexSchur</td>
|
---|
191 | <td>Square</td>
|
---|
192 | <td>Slow-very slow<sup><a href="#note2">2</a></sup></td>
|
---|
193 | <td>Depends on condition number</td>
|
---|
194 | <td>Yes</td>
|
---|
195 | <td>-</td>
|
---|
196 | <td>-</td>
|
---|
197 | <td>Average</td>
|
---|
198 | <td>-</td>
|
---|
199 | </tr>
|
---|
200 |
|
---|
201 | <tr class="alt">
|
---|
202 | <td>Tridiagonalization</td>
|
---|
203 | <td>Self-adjoint</td>
|
---|
204 | <td>Fast</td>
|
---|
205 | <td>Good</td>
|
---|
206 | <td>-</td>
|
---|
207 | <td>-</td>
|
---|
208 | <td>-</td>
|
---|
209 | <td>Good</td>
|
---|
210 | <td><em>Soon: blocking</em></td>
|
---|
211 | </tr>
|
---|
212 |
|
---|
213 | <tr>
|
---|
214 | <td>HessenbergDecomposition</td>
|
---|
215 | <td>Square</td>
|
---|
216 | <td>Average</td>
|
---|
217 | <td>Good</td>
|
---|
218 | <td>-</td>
|
---|
219 | <td>-</td>
|
---|
220 | <td>-</td>
|
---|
221 | <td>Good</td>
|
---|
222 | <td><em>Soon: blocking</em></td>
|
---|
223 | </tr>
|
---|
224 |
|
---|
225 | </table>
|
---|
226 |
|
---|
227 | \b Notes:
|
---|
228 | <ul>
|
---|
229 | <li><a name="note1">\b 1: </a>There exist two variants of the LDLT algorithm. Eigen's one produces a pure diagonal D matrix, and therefore it cannot handle indefinite matrices, unlike Lapack's one which produces a block diagonal D matrix.</li>
|
---|
230 | <li><a name="note2">\b 2: </a>Eigenvalues, SVD and Schur decompositions rely on iterative algorithms. Their convergence speed depends on how well the eigenvalues are separated.</li>
|
---|
231 | <li><a name="note3">\b 3: </a>Our JacobiSVD is two-sided, making for proven and optimal precision for square matrices. For non-square matrices, we have to use a QR preconditioner first. The default choice, ColPivHouseholderQR, is already very reliable, but if you want it to be proven, use FullPivHouseholderQR instead.
|
---|
232 | </ul>
|
---|
233 |
|
---|
234 | \section TopicLinAlgTerminology Terminology
|
---|
235 |
|
---|
236 | <dl>
|
---|
237 | <dt><b>Selfadjoint</b></dt>
|
---|
238 | <dd>For a real matrix, selfadjoint is a synonym for symmetric. For a complex matrix, selfadjoint is a synonym for \em hermitian.
|
---|
239 | More generally, a matrix \f$ A \f$ is selfadjoint if and only if it is equal to its adjoint \f$ A^* \f$. The adjoint is also called the \em conjugate \em transpose. </dd>
|
---|
240 | <dt><b>Positive/negative definite</b></dt>
|
---|
241 | <dd>A selfadjoint matrix \f$ A \f$ is positive definite if \f$ v^* A v > 0 \f$ for any non zero vector \f$ v \f$.
|
---|
242 | In the same vein, it is negative definite if \f$ v^* A v < 0 \f$ for any non zero vector \f$ v \f$ </dd>
|
---|
243 | <dt><b>Positive/negative semidefinite</b></dt>
|
---|
244 | <dd>A selfadjoint matrix \f$ A \f$ is positive semi-definite if \f$ v^* A v \ge 0 \f$ for any non zero vector \f$ v \f$.
|
---|
245 | In the same vein, it is negative semi-definite if \f$ v^* A v \le 0 \f$ for any non zero vector \f$ v \f$ </dd>
|
---|
246 |
|
---|
247 | <dt><b>Blocking</b></dt>
|
---|
248 | <dd>Means the algorithm can work per block, whence guaranteeing a good scaling of the performance for large matrices.</dd>
|
---|
249 | <dt><b>Implicit Multi Threading (MT)</b></dt>
|
---|
250 | <dd>Means the algorithm can take advantage of multicore processors via OpenMP. "Implicit" means the algortihm itself is not parallelized, but that it relies on parallelized matrix-matrix product rountines.</dd>
|
---|
251 | <dt><b>Explicit Multi Threading (MT)</b></dt>
|
---|
252 | <dd>Means the algorithm is explicitely parallelized to take advantage of multicore processors via OpenMP.</dd>
|
---|
253 | <dt><b>Meta-unroller</b></dt>
|
---|
254 | <dd>Means the algorithm is automatically and explicitly unrolled for very small fixed size matrices.</dd>
|
---|
255 | <dt><b></b></dt>
|
---|
256 | <dd></dd>
|
---|
257 | </dl>
|
---|
258 |
|
---|
259 | */
|
---|
260 |
|
---|
261 | }
|
---|