1 | *> \brief \b CLARF
|
---|
2 | *
|
---|
3 | * =========== DOCUMENTATION ===========
|
---|
4 | *
|
---|
5 | * Online html documentation available at
|
---|
6 | * http://www.netlib.org/lapack/explore-html/
|
---|
7 | *
|
---|
8 | *> \htmlonly
|
---|
9 | *> Download CLARF + dependencies
|
---|
10 | *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/clarf.f">
|
---|
11 | *> [TGZ]</a>
|
---|
12 | *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/clarf.f">
|
---|
13 | *> [ZIP]</a>
|
---|
14 | *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/clarf.f">
|
---|
15 | *> [TXT]</a>
|
---|
16 | *> \endhtmlonly
|
---|
17 | *
|
---|
18 | * Definition:
|
---|
19 | * ===========
|
---|
20 | *
|
---|
21 | * SUBROUTINE CLARF( SIDE, M, N, V, INCV, TAU, C, LDC, WORK )
|
---|
22 | *
|
---|
23 | * .. Scalar Arguments ..
|
---|
24 | * CHARACTER SIDE
|
---|
25 | * INTEGER INCV, LDC, M, N
|
---|
26 | * COMPLEX TAU
|
---|
27 | * ..
|
---|
28 | * .. Array Arguments ..
|
---|
29 | * COMPLEX C( LDC, * ), V( * ), WORK( * )
|
---|
30 | * ..
|
---|
31 | *
|
---|
32 | *
|
---|
33 | *> \par Purpose:
|
---|
34 | * =============
|
---|
35 | *>
|
---|
36 | *> \verbatim
|
---|
37 | *>
|
---|
38 | *> CLARF applies a complex elementary reflector H to a complex M-by-N
|
---|
39 | *> matrix C, from either the left or the right. H is represented in the
|
---|
40 | *> form
|
---|
41 | *>
|
---|
42 | *> H = I - tau * v * v**H
|
---|
43 | *>
|
---|
44 | *> where tau is a complex scalar and v is a complex vector.
|
---|
45 | *>
|
---|
46 | *> If tau = 0, then H is taken to be the unit matrix.
|
---|
47 | *>
|
---|
48 | *> To apply H**H (the conjugate transpose of H), supply conjg(tau) instead
|
---|
49 | *> tau.
|
---|
50 | *> \endverbatim
|
---|
51 | *
|
---|
52 | * Arguments:
|
---|
53 | * ==========
|
---|
54 | *
|
---|
55 | *> \param[in] SIDE
|
---|
56 | *> \verbatim
|
---|
57 | *> SIDE is CHARACTER*1
|
---|
58 | *> = 'L': form H * C
|
---|
59 | *> = 'R': form C * H
|
---|
60 | *> \endverbatim
|
---|
61 | *>
|
---|
62 | *> \param[in] M
|
---|
63 | *> \verbatim
|
---|
64 | *> M is INTEGER
|
---|
65 | *> The number of rows of the matrix C.
|
---|
66 | *> \endverbatim
|
---|
67 | *>
|
---|
68 | *> \param[in] N
|
---|
69 | *> \verbatim
|
---|
70 | *> N is INTEGER
|
---|
71 | *> The number of columns of the matrix C.
|
---|
72 | *> \endverbatim
|
---|
73 | *>
|
---|
74 | *> \param[in] V
|
---|
75 | *> \verbatim
|
---|
76 | *> V is COMPLEX array, dimension
|
---|
77 | *> (1 + (M-1)*abs(INCV)) if SIDE = 'L'
|
---|
78 | *> or (1 + (N-1)*abs(INCV)) if SIDE = 'R'
|
---|
79 | *> The vector v in the representation of H. V is not used if
|
---|
80 | *> TAU = 0.
|
---|
81 | *> \endverbatim
|
---|
82 | *>
|
---|
83 | *> \param[in] INCV
|
---|
84 | *> \verbatim
|
---|
85 | *> INCV is INTEGER
|
---|
86 | *> The increment between elements of v. INCV <> 0.
|
---|
87 | *> \endverbatim
|
---|
88 | *>
|
---|
89 | *> \param[in] TAU
|
---|
90 | *> \verbatim
|
---|
91 | *> TAU is COMPLEX
|
---|
92 | *> The value tau in the representation of H.
|
---|
93 | *> \endverbatim
|
---|
94 | *>
|
---|
95 | *> \param[in,out] C
|
---|
96 | *> \verbatim
|
---|
97 | *> C is COMPLEX array, dimension (LDC,N)
|
---|
98 | *> On entry, the M-by-N matrix C.
|
---|
99 | *> On exit, C is overwritten by the matrix H * C if SIDE = 'L',
|
---|
100 | *> or C * H if SIDE = 'R'.
|
---|
101 | *> \endverbatim
|
---|
102 | *>
|
---|
103 | *> \param[in] LDC
|
---|
104 | *> \verbatim
|
---|
105 | *> LDC is INTEGER
|
---|
106 | *> The leading dimension of the array C. LDC >= max(1,M).
|
---|
107 | *> \endverbatim
|
---|
108 | *>
|
---|
109 | *> \param[out] WORK
|
---|
110 | *> \verbatim
|
---|
111 | *> WORK is COMPLEX array, dimension
|
---|
112 | *> (N) if SIDE = 'L'
|
---|
113 | *> or (M) if SIDE = 'R'
|
---|
114 | *> \endverbatim
|
---|
115 | *
|
---|
116 | * Authors:
|
---|
117 | * ========
|
---|
118 | *
|
---|
119 | *> \author Univ. of Tennessee
|
---|
120 | *> \author Univ. of California Berkeley
|
---|
121 | *> \author Univ. of Colorado Denver
|
---|
122 | *> \author NAG Ltd.
|
---|
123 | *
|
---|
124 | *> \date November 2011
|
---|
125 | *
|
---|
126 | *> \ingroup complexOTHERauxiliary
|
---|
127 | *
|
---|
128 | * =====================================================================
|
---|
129 | SUBROUTINE CLARF( SIDE, M, N, V, INCV, TAU, C, LDC, WORK )
|
---|
130 | *
|
---|
131 | * -- LAPACK auxiliary routine (version 3.4.0) --
|
---|
132 | * -- LAPACK is a software package provided by Univ. of Tennessee, --
|
---|
133 | * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
|
---|
134 | * November 2011
|
---|
135 | *
|
---|
136 | * .. Scalar Arguments ..
|
---|
137 | CHARACTER SIDE
|
---|
138 | INTEGER INCV, LDC, M, N
|
---|
139 | COMPLEX TAU
|
---|
140 | * ..
|
---|
141 | * .. Array Arguments ..
|
---|
142 | COMPLEX C( LDC, * ), V( * ), WORK( * )
|
---|
143 | * ..
|
---|
144 | *
|
---|
145 | * =====================================================================
|
---|
146 | *
|
---|
147 | * .. Parameters ..
|
---|
148 | COMPLEX ONE, ZERO
|
---|
149 | PARAMETER ( ONE = ( 1.0E+0, 0.0E+0 ),
|
---|
150 | $ ZERO = ( 0.0E+0, 0.0E+0 ) )
|
---|
151 | * ..
|
---|
152 | * .. Local Scalars ..
|
---|
153 | LOGICAL APPLYLEFT
|
---|
154 | INTEGER I, LASTV, LASTC
|
---|
155 | * ..
|
---|
156 | * .. External Subroutines ..
|
---|
157 | EXTERNAL CGEMV, CGERC
|
---|
158 | * ..
|
---|
159 | * .. External Functions ..
|
---|
160 | LOGICAL LSAME
|
---|
161 | INTEGER ILACLR, ILACLC
|
---|
162 | EXTERNAL LSAME, ILACLR, ILACLC
|
---|
163 | * ..
|
---|
164 | * .. Executable Statements ..
|
---|
165 | *
|
---|
166 | APPLYLEFT = LSAME( SIDE, 'L' )
|
---|
167 | LASTV = 0
|
---|
168 | LASTC = 0
|
---|
169 | IF( TAU.NE.ZERO ) THEN
|
---|
170 | ! Set up variables for scanning V. LASTV begins pointing to the end
|
---|
171 | ! of V.
|
---|
172 | IF( APPLYLEFT ) THEN
|
---|
173 | LASTV = M
|
---|
174 | ELSE
|
---|
175 | LASTV = N
|
---|
176 | END IF
|
---|
177 | IF( INCV.GT.0 ) THEN
|
---|
178 | I = 1 + (LASTV-1) * INCV
|
---|
179 | ELSE
|
---|
180 | I = 1
|
---|
181 | END IF
|
---|
182 | ! Look for the last non-zero row in V.
|
---|
183 | DO WHILE( LASTV.GT.0 .AND. V( I ).EQ.ZERO )
|
---|
184 | LASTV = LASTV - 1
|
---|
185 | I = I - INCV
|
---|
186 | END DO
|
---|
187 | IF( APPLYLEFT ) THEN
|
---|
188 | ! Scan for the last non-zero column in C(1:lastv,:).
|
---|
189 | LASTC = ILACLC(LASTV, N, C, LDC)
|
---|
190 | ELSE
|
---|
191 | ! Scan for the last non-zero row in C(:,1:lastv).
|
---|
192 | LASTC = ILACLR(M, LASTV, C, LDC)
|
---|
193 | END IF
|
---|
194 | END IF
|
---|
195 | ! Note that lastc.eq.0 renders the BLAS operations null; no special
|
---|
196 | ! case is needed at this level.
|
---|
197 | IF( APPLYLEFT ) THEN
|
---|
198 | *
|
---|
199 | * Form H * C
|
---|
200 | *
|
---|
201 | IF( LASTV.GT.0 ) THEN
|
---|
202 | *
|
---|
203 | * w(1:lastc,1) := C(1:lastv,1:lastc)**H * v(1:lastv,1)
|
---|
204 | *
|
---|
205 | CALL CGEMV( 'Conjugate transpose', LASTV, LASTC, ONE,
|
---|
206 | $ C, LDC, V, INCV, ZERO, WORK, 1 )
|
---|
207 | *
|
---|
208 | * C(1:lastv,1:lastc) := C(...) - v(1:lastv,1) * w(1:lastc,1)**H
|
---|
209 | *
|
---|
210 | CALL CGERC( LASTV, LASTC, -TAU, V, INCV, WORK, 1, C, LDC )
|
---|
211 | END IF
|
---|
212 | ELSE
|
---|
213 | *
|
---|
214 | * Form C * H
|
---|
215 | *
|
---|
216 | IF( LASTV.GT.0 ) THEN
|
---|
217 | *
|
---|
218 | * w(1:lastc,1) := C(1:lastc,1:lastv) * v(1:lastv,1)
|
---|
219 | *
|
---|
220 | CALL CGEMV( 'No transpose', LASTC, LASTV, ONE, C, LDC,
|
---|
221 | $ V, INCV, ZERO, WORK, 1 )
|
---|
222 | *
|
---|
223 | * C(1:lastc,1:lastv) := C(...) - w(1:lastc,1) * v(1:lastv,1)**H
|
---|
224 | *
|
---|
225 | CALL CGERC( LASTC, LASTV, -TAU, WORK, 1, V, INCV, C, LDC )
|
---|
226 | END IF
|
---|
227 | END IF
|
---|
228 | RETURN
|
---|
229 | *
|
---|
230 | * End of CLARF
|
---|
231 | *
|
---|
232 | END
|
---|