1 | *> \brief \b CLARFG
|
---|
2 | *
|
---|
3 | * =========== DOCUMENTATION ===========
|
---|
4 | *
|
---|
5 | * Online html documentation available at
|
---|
6 | * http://www.netlib.org/lapack/explore-html/
|
---|
7 | *
|
---|
8 | *> \htmlonly
|
---|
9 | *> Download CLARFG + dependencies
|
---|
10 | *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/clarfg.f">
|
---|
11 | *> [TGZ]</a>
|
---|
12 | *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/clarfg.f">
|
---|
13 | *> [ZIP]</a>
|
---|
14 | *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/clarfg.f">
|
---|
15 | *> [TXT]</a>
|
---|
16 | *> \endhtmlonly
|
---|
17 | *
|
---|
18 | * Definition:
|
---|
19 | * ===========
|
---|
20 | *
|
---|
21 | * SUBROUTINE CLARFG( N, ALPHA, X, INCX, TAU )
|
---|
22 | *
|
---|
23 | * .. Scalar Arguments ..
|
---|
24 | * INTEGER INCX, N
|
---|
25 | * COMPLEX ALPHA, TAU
|
---|
26 | * ..
|
---|
27 | * .. Array Arguments ..
|
---|
28 | * COMPLEX X( * )
|
---|
29 | * ..
|
---|
30 | *
|
---|
31 | *
|
---|
32 | *> \par Purpose:
|
---|
33 | * =============
|
---|
34 | *>
|
---|
35 | *> \verbatim
|
---|
36 | *>
|
---|
37 | *> CLARFG generates a complex elementary reflector H of order n, such
|
---|
38 | *> that
|
---|
39 | *>
|
---|
40 | *> H**H * ( alpha ) = ( beta ), H**H * H = I.
|
---|
41 | *> ( x ) ( 0 )
|
---|
42 | *>
|
---|
43 | *> where alpha and beta are scalars, with beta real, and x is an
|
---|
44 | *> (n-1)-element complex vector. H is represented in the form
|
---|
45 | *>
|
---|
46 | *> H = I - tau * ( 1 ) * ( 1 v**H ) ,
|
---|
47 | *> ( v )
|
---|
48 | *>
|
---|
49 | *> where tau is a complex scalar and v is a complex (n-1)-element
|
---|
50 | *> vector. Note that H is not hermitian.
|
---|
51 | *>
|
---|
52 | *> If the elements of x are all zero and alpha is real, then tau = 0
|
---|
53 | *> and H is taken to be the unit matrix.
|
---|
54 | *>
|
---|
55 | *> Otherwise 1 <= real(tau) <= 2 and abs(tau-1) <= 1 .
|
---|
56 | *> \endverbatim
|
---|
57 | *
|
---|
58 | * Arguments:
|
---|
59 | * ==========
|
---|
60 | *
|
---|
61 | *> \param[in] N
|
---|
62 | *> \verbatim
|
---|
63 | *> N is INTEGER
|
---|
64 | *> The order of the elementary reflector.
|
---|
65 | *> \endverbatim
|
---|
66 | *>
|
---|
67 | *> \param[in,out] ALPHA
|
---|
68 | *> \verbatim
|
---|
69 | *> ALPHA is COMPLEX
|
---|
70 | *> On entry, the value alpha.
|
---|
71 | *> On exit, it is overwritten with the value beta.
|
---|
72 | *> \endverbatim
|
---|
73 | *>
|
---|
74 | *> \param[in,out] X
|
---|
75 | *> \verbatim
|
---|
76 | *> X is COMPLEX array, dimension
|
---|
77 | *> (1+(N-2)*abs(INCX))
|
---|
78 | *> On entry, the vector x.
|
---|
79 | *> On exit, it is overwritten with the vector v.
|
---|
80 | *> \endverbatim
|
---|
81 | *>
|
---|
82 | *> \param[in] INCX
|
---|
83 | *> \verbatim
|
---|
84 | *> INCX is INTEGER
|
---|
85 | *> The increment between elements of X. INCX > 0.
|
---|
86 | *> \endverbatim
|
---|
87 | *>
|
---|
88 | *> \param[out] TAU
|
---|
89 | *> \verbatim
|
---|
90 | *> TAU is COMPLEX
|
---|
91 | *> The value tau.
|
---|
92 | *> \endverbatim
|
---|
93 | *
|
---|
94 | * Authors:
|
---|
95 | * ========
|
---|
96 | *
|
---|
97 | *> \author Univ. of Tennessee
|
---|
98 | *> \author Univ. of California Berkeley
|
---|
99 | *> \author Univ. of Colorado Denver
|
---|
100 | *> \author NAG Ltd.
|
---|
101 | *
|
---|
102 | *> \date November 2011
|
---|
103 | *
|
---|
104 | *> \ingroup complexOTHERauxiliary
|
---|
105 | *
|
---|
106 | * =====================================================================
|
---|
107 | SUBROUTINE CLARFG( N, ALPHA, X, INCX, TAU )
|
---|
108 | *
|
---|
109 | * -- LAPACK auxiliary routine (version 3.4.0) --
|
---|
110 | * -- LAPACK is a software package provided by Univ. of Tennessee, --
|
---|
111 | * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
|
---|
112 | * November 2011
|
---|
113 | *
|
---|
114 | * .. Scalar Arguments ..
|
---|
115 | INTEGER INCX, N
|
---|
116 | COMPLEX ALPHA, TAU
|
---|
117 | * ..
|
---|
118 | * .. Array Arguments ..
|
---|
119 | COMPLEX X( * )
|
---|
120 | * ..
|
---|
121 | *
|
---|
122 | * =====================================================================
|
---|
123 | *
|
---|
124 | * .. Parameters ..
|
---|
125 | REAL ONE, ZERO
|
---|
126 | PARAMETER ( ONE = 1.0E+0, ZERO = 0.0E+0 )
|
---|
127 | * ..
|
---|
128 | * .. Local Scalars ..
|
---|
129 | INTEGER J, KNT
|
---|
130 | REAL ALPHI, ALPHR, BETA, RSAFMN, SAFMIN, XNORM
|
---|
131 | * ..
|
---|
132 | * .. External Functions ..
|
---|
133 | REAL SCNRM2, SLAMCH, SLAPY3
|
---|
134 | COMPLEX CLADIV
|
---|
135 | EXTERNAL SCNRM2, SLAMCH, SLAPY3, CLADIV
|
---|
136 | * ..
|
---|
137 | * .. Intrinsic Functions ..
|
---|
138 | INTRINSIC ABS, AIMAG, CMPLX, REAL, SIGN
|
---|
139 | * ..
|
---|
140 | * .. External Subroutines ..
|
---|
141 | EXTERNAL CSCAL, CSSCAL
|
---|
142 | * ..
|
---|
143 | * .. Executable Statements ..
|
---|
144 | *
|
---|
145 | IF( N.LE.0 ) THEN
|
---|
146 | TAU = ZERO
|
---|
147 | RETURN
|
---|
148 | END IF
|
---|
149 | *
|
---|
150 | XNORM = SCNRM2( N-1, X, INCX )
|
---|
151 | ALPHR = REAL( ALPHA )
|
---|
152 | ALPHI = AIMAG( ALPHA )
|
---|
153 | *
|
---|
154 | IF( XNORM.EQ.ZERO .AND. ALPHI.EQ.ZERO ) THEN
|
---|
155 | *
|
---|
156 | * H = I
|
---|
157 | *
|
---|
158 | TAU = ZERO
|
---|
159 | ELSE
|
---|
160 | *
|
---|
161 | * general case
|
---|
162 | *
|
---|
163 | BETA = -SIGN( SLAPY3( ALPHR, ALPHI, XNORM ), ALPHR )
|
---|
164 | SAFMIN = SLAMCH( 'S' ) / SLAMCH( 'E' )
|
---|
165 | RSAFMN = ONE / SAFMIN
|
---|
166 | *
|
---|
167 | KNT = 0
|
---|
168 | IF( ABS( BETA ).LT.SAFMIN ) THEN
|
---|
169 | *
|
---|
170 | * XNORM, BETA may be inaccurate; scale X and recompute them
|
---|
171 | *
|
---|
172 | 10 CONTINUE
|
---|
173 | KNT = KNT + 1
|
---|
174 | CALL CSSCAL( N-1, RSAFMN, X, INCX )
|
---|
175 | BETA = BETA*RSAFMN
|
---|
176 | ALPHI = ALPHI*RSAFMN
|
---|
177 | ALPHR = ALPHR*RSAFMN
|
---|
178 | IF( ABS( BETA ).LT.SAFMIN )
|
---|
179 | $ GO TO 10
|
---|
180 | *
|
---|
181 | * New BETA is at most 1, at least SAFMIN
|
---|
182 | *
|
---|
183 | XNORM = SCNRM2( N-1, X, INCX )
|
---|
184 | ALPHA = CMPLX( ALPHR, ALPHI )
|
---|
185 | BETA = -SIGN( SLAPY3( ALPHR, ALPHI, XNORM ), ALPHR )
|
---|
186 | END IF
|
---|
187 | TAU = CMPLX( ( BETA-ALPHR ) / BETA, -ALPHI / BETA )
|
---|
188 | ALPHA = CLADIV( CMPLX( ONE ), ALPHA-BETA )
|
---|
189 | CALL CSCAL( N-1, ALPHA, X, INCX )
|
---|
190 | *
|
---|
191 | * If ALPHA is subnormal, it may lose relative accuracy
|
---|
192 | *
|
---|
193 | DO 20 J = 1, KNT
|
---|
194 | BETA = BETA*SAFMIN
|
---|
195 | 20 CONTINUE
|
---|
196 | ALPHA = BETA
|
---|
197 | END IF
|
---|
198 | *
|
---|
199 | RETURN
|
---|
200 | *
|
---|
201 | * End of CLARFG
|
---|
202 | *
|
---|
203 | END
|
---|