1 | *> \brief \b DLARFT
|
---|
2 | *
|
---|
3 | * =========== DOCUMENTATION ===========
|
---|
4 | *
|
---|
5 | * Online html documentation available at
|
---|
6 | * http://www.netlib.org/lapack/explore-html/
|
---|
7 | *
|
---|
8 | *> \htmlonly
|
---|
9 | *> Download DLARFT + dependencies
|
---|
10 | *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlarft.f">
|
---|
11 | *> [TGZ]</a>
|
---|
12 | *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlarft.f">
|
---|
13 | *> [ZIP]</a>
|
---|
14 | *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlarft.f">
|
---|
15 | *> [TXT]</a>
|
---|
16 | *> \endhtmlonly
|
---|
17 | *
|
---|
18 | * Definition:
|
---|
19 | * ===========
|
---|
20 | *
|
---|
21 | * SUBROUTINE DLARFT( DIRECT, STOREV, N, K, V, LDV, TAU, T, LDT )
|
---|
22 | *
|
---|
23 | * .. Scalar Arguments ..
|
---|
24 | * CHARACTER DIRECT, STOREV
|
---|
25 | * INTEGER K, LDT, LDV, N
|
---|
26 | * ..
|
---|
27 | * .. Array Arguments ..
|
---|
28 | * DOUBLE PRECISION T( LDT, * ), TAU( * ), V( LDV, * )
|
---|
29 | * ..
|
---|
30 | *
|
---|
31 | *
|
---|
32 | *> \par Purpose:
|
---|
33 | * =============
|
---|
34 | *>
|
---|
35 | *> \verbatim
|
---|
36 | *>
|
---|
37 | *> DLARFT forms the triangular factor T of a real block reflector H
|
---|
38 | *> of order n, which is defined as a product of k elementary reflectors.
|
---|
39 | *>
|
---|
40 | *> If DIRECT = 'F', H = H(1) H(2) . . . H(k) and T is upper triangular;
|
---|
41 | *>
|
---|
42 | *> If DIRECT = 'B', H = H(k) . . . H(2) H(1) and T is lower triangular.
|
---|
43 | *>
|
---|
44 | *> If STOREV = 'C', the vector which defines the elementary reflector
|
---|
45 | *> H(i) is stored in the i-th column of the array V, and
|
---|
46 | *>
|
---|
47 | *> H = I - V * T * V**T
|
---|
48 | *>
|
---|
49 | *> If STOREV = 'R', the vector which defines the elementary reflector
|
---|
50 | *> H(i) is stored in the i-th row of the array V, and
|
---|
51 | *>
|
---|
52 | *> H = I - V**T * T * V
|
---|
53 | *> \endverbatim
|
---|
54 | *
|
---|
55 | * Arguments:
|
---|
56 | * ==========
|
---|
57 | *
|
---|
58 | *> \param[in] DIRECT
|
---|
59 | *> \verbatim
|
---|
60 | *> DIRECT is CHARACTER*1
|
---|
61 | *> Specifies the order in which the elementary reflectors are
|
---|
62 | *> multiplied to form the block reflector:
|
---|
63 | *> = 'F': H = H(1) H(2) . . . H(k) (Forward)
|
---|
64 | *> = 'B': H = H(k) . . . H(2) H(1) (Backward)
|
---|
65 | *> \endverbatim
|
---|
66 | *>
|
---|
67 | *> \param[in] STOREV
|
---|
68 | *> \verbatim
|
---|
69 | *> STOREV is CHARACTER*1
|
---|
70 | *> Specifies how the vectors which define the elementary
|
---|
71 | *> reflectors are stored (see also Further Details):
|
---|
72 | *> = 'C': columnwise
|
---|
73 | *> = 'R': rowwise
|
---|
74 | *> \endverbatim
|
---|
75 | *>
|
---|
76 | *> \param[in] N
|
---|
77 | *> \verbatim
|
---|
78 | *> N is INTEGER
|
---|
79 | *> The order of the block reflector H. N >= 0.
|
---|
80 | *> \endverbatim
|
---|
81 | *>
|
---|
82 | *> \param[in] K
|
---|
83 | *> \verbatim
|
---|
84 | *> K is INTEGER
|
---|
85 | *> The order of the triangular factor T (= the number of
|
---|
86 | *> elementary reflectors). K >= 1.
|
---|
87 | *> \endverbatim
|
---|
88 | *>
|
---|
89 | *> \param[in] V
|
---|
90 | *> \verbatim
|
---|
91 | *> V is DOUBLE PRECISION array, dimension
|
---|
92 | *> (LDV,K) if STOREV = 'C'
|
---|
93 | *> (LDV,N) if STOREV = 'R'
|
---|
94 | *> The matrix V. See further details.
|
---|
95 | *> \endverbatim
|
---|
96 | *>
|
---|
97 | *> \param[in] LDV
|
---|
98 | *> \verbatim
|
---|
99 | *> LDV is INTEGER
|
---|
100 | *> The leading dimension of the array V.
|
---|
101 | *> If STOREV = 'C', LDV >= max(1,N); if STOREV = 'R', LDV >= K.
|
---|
102 | *> \endverbatim
|
---|
103 | *>
|
---|
104 | *> \param[in] TAU
|
---|
105 | *> \verbatim
|
---|
106 | *> TAU is DOUBLE PRECISION array, dimension (K)
|
---|
107 | *> TAU(i) must contain the scalar factor of the elementary
|
---|
108 | *> reflector H(i).
|
---|
109 | *> \endverbatim
|
---|
110 | *>
|
---|
111 | *> \param[out] T
|
---|
112 | *> \verbatim
|
---|
113 | *> T is DOUBLE PRECISION array, dimension (LDT,K)
|
---|
114 | *> The k by k triangular factor T of the block reflector.
|
---|
115 | *> If DIRECT = 'F', T is upper triangular; if DIRECT = 'B', T is
|
---|
116 | *> lower triangular. The rest of the array is not used.
|
---|
117 | *> \endverbatim
|
---|
118 | *>
|
---|
119 | *> \param[in] LDT
|
---|
120 | *> \verbatim
|
---|
121 | *> LDT is INTEGER
|
---|
122 | *> The leading dimension of the array T. LDT >= K.
|
---|
123 | *> \endverbatim
|
---|
124 | *
|
---|
125 | * Authors:
|
---|
126 | * ========
|
---|
127 | *
|
---|
128 | *> \author Univ. of Tennessee
|
---|
129 | *> \author Univ. of California Berkeley
|
---|
130 | *> \author Univ. of Colorado Denver
|
---|
131 | *> \author NAG Ltd.
|
---|
132 | *
|
---|
133 | *> \date April 2012
|
---|
134 | *
|
---|
135 | *> \ingroup doubleOTHERauxiliary
|
---|
136 | *
|
---|
137 | *> \par Further Details:
|
---|
138 | * =====================
|
---|
139 | *>
|
---|
140 | *> \verbatim
|
---|
141 | *>
|
---|
142 | *> The shape of the matrix V and the storage of the vectors which define
|
---|
143 | *> the H(i) is best illustrated by the following example with n = 5 and
|
---|
144 | *> k = 3. The elements equal to 1 are not stored.
|
---|
145 | *>
|
---|
146 | *> DIRECT = 'F' and STOREV = 'C': DIRECT = 'F' and STOREV = 'R':
|
---|
147 | *>
|
---|
148 | *> V = ( 1 ) V = ( 1 v1 v1 v1 v1 )
|
---|
149 | *> ( v1 1 ) ( 1 v2 v2 v2 )
|
---|
150 | *> ( v1 v2 1 ) ( 1 v3 v3 )
|
---|
151 | *> ( v1 v2 v3 )
|
---|
152 | *> ( v1 v2 v3 )
|
---|
153 | *>
|
---|
154 | *> DIRECT = 'B' and STOREV = 'C': DIRECT = 'B' and STOREV = 'R':
|
---|
155 | *>
|
---|
156 | *> V = ( v1 v2 v3 ) V = ( v1 v1 1 )
|
---|
157 | *> ( v1 v2 v3 ) ( v2 v2 v2 1 )
|
---|
158 | *> ( 1 v2 v3 ) ( v3 v3 v3 v3 1 )
|
---|
159 | *> ( 1 v3 )
|
---|
160 | *> ( 1 )
|
---|
161 | *> \endverbatim
|
---|
162 | *>
|
---|
163 | * =====================================================================
|
---|
164 | SUBROUTINE DLARFT( DIRECT, STOREV, N, K, V, LDV, TAU, T, LDT )
|
---|
165 | *
|
---|
166 | * -- LAPACK auxiliary routine (version 3.4.1) --
|
---|
167 | * -- LAPACK is a software package provided by Univ. of Tennessee, --
|
---|
168 | * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
|
---|
169 | * April 2012
|
---|
170 | *
|
---|
171 | * .. Scalar Arguments ..
|
---|
172 | CHARACTER DIRECT, STOREV
|
---|
173 | INTEGER K, LDT, LDV, N
|
---|
174 | * ..
|
---|
175 | * .. Array Arguments ..
|
---|
176 | DOUBLE PRECISION T( LDT, * ), TAU( * ), V( LDV, * )
|
---|
177 | * ..
|
---|
178 | *
|
---|
179 | * =====================================================================
|
---|
180 | *
|
---|
181 | * .. Parameters ..
|
---|
182 | DOUBLE PRECISION ONE, ZERO
|
---|
183 | PARAMETER ( ONE = 1.0D+0, ZERO = 0.0D+0 )
|
---|
184 | * ..
|
---|
185 | * .. Local Scalars ..
|
---|
186 | INTEGER I, J, PREVLASTV, LASTV
|
---|
187 | * ..
|
---|
188 | * .. External Subroutines ..
|
---|
189 | EXTERNAL DGEMV, DTRMV
|
---|
190 | * ..
|
---|
191 | * .. External Functions ..
|
---|
192 | LOGICAL LSAME
|
---|
193 | EXTERNAL LSAME
|
---|
194 | * ..
|
---|
195 | * .. Executable Statements ..
|
---|
196 | *
|
---|
197 | * Quick return if possible
|
---|
198 | *
|
---|
199 | IF( N.EQ.0 )
|
---|
200 | $ RETURN
|
---|
201 | *
|
---|
202 | IF( LSAME( DIRECT, 'F' ) ) THEN
|
---|
203 | PREVLASTV = N
|
---|
204 | DO I = 1, K
|
---|
205 | PREVLASTV = MAX( I, PREVLASTV )
|
---|
206 | IF( TAU( I ).EQ.ZERO ) THEN
|
---|
207 | *
|
---|
208 | * H(i) = I
|
---|
209 | *
|
---|
210 | DO J = 1, I
|
---|
211 | T( J, I ) = ZERO
|
---|
212 | END DO
|
---|
213 | ELSE
|
---|
214 | *
|
---|
215 | * general case
|
---|
216 | *
|
---|
217 | IF( LSAME( STOREV, 'C' ) ) THEN
|
---|
218 | * Skip any trailing zeros.
|
---|
219 | DO LASTV = N, I+1, -1
|
---|
220 | IF( V( LASTV, I ).NE.ZERO ) EXIT
|
---|
221 | END DO
|
---|
222 | DO J = 1, I-1
|
---|
223 | T( J, I ) = -TAU( I ) * V( I , J )
|
---|
224 | END DO
|
---|
225 | J = MIN( LASTV, PREVLASTV )
|
---|
226 | *
|
---|
227 | * T(1:i-1,i) := - tau(i) * V(i:j,1:i-1)**T * V(i:j,i)
|
---|
228 | *
|
---|
229 | CALL DGEMV( 'Transpose', J-I, I-1, -TAU( I ),
|
---|
230 | $ V( I+1, 1 ), LDV, V( I+1, I ), 1, ONE,
|
---|
231 | $ T( 1, I ), 1 )
|
---|
232 | ELSE
|
---|
233 | * Skip any trailing zeros.
|
---|
234 | DO LASTV = N, I+1, -1
|
---|
235 | IF( V( I, LASTV ).NE.ZERO ) EXIT
|
---|
236 | END DO
|
---|
237 | DO J = 1, I-1
|
---|
238 | T( J, I ) = -TAU( I ) * V( J , I )
|
---|
239 | END DO
|
---|
240 | J = MIN( LASTV, PREVLASTV )
|
---|
241 | *
|
---|
242 | * T(1:i-1,i) := - tau(i) * V(1:i-1,i:j) * V(i,i:j)**T
|
---|
243 | *
|
---|
244 | CALL DGEMV( 'No transpose', I-1, J-I, -TAU( I ),
|
---|
245 | $ V( 1, I+1 ), LDV, V( I, I+1 ), LDV, ONE,
|
---|
246 | $ T( 1, I ), 1 )
|
---|
247 | END IF
|
---|
248 | *
|
---|
249 | * T(1:i-1,i) := T(1:i-1,1:i-1) * T(1:i-1,i)
|
---|
250 | *
|
---|
251 | CALL DTRMV( 'Upper', 'No transpose', 'Non-unit', I-1, T,
|
---|
252 | $ LDT, T( 1, I ), 1 )
|
---|
253 | T( I, I ) = TAU( I )
|
---|
254 | IF( I.GT.1 ) THEN
|
---|
255 | PREVLASTV = MAX( PREVLASTV, LASTV )
|
---|
256 | ELSE
|
---|
257 | PREVLASTV = LASTV
|
---|
258 | END IF
|
---|
259 | END IF
|
---|
260 | END DO
|
---|
261 | ELSE
|
---|
262 | PREVLASTV = 1
|
---|
263 | DO I = K, 1, -1
|
---|
264 | IF( TAU( I ).EQ.ZERO ) THEN
|
---|
265 | *
|
---|
266 | * H(i) = I
|
---|
267 | *
|
---|
268 | DO J = I, K
|
---|
269 | T( J, I ) = ZERO
|
---|
270 | END DO
|
---|
271 | ELSE
|
---|
272 | *
|
---|
273 | * general case
|
---|
274 | *
|
---|
275 | IF( I.LT.K ) THEN
|
---|
276 | IF( LSAME( STOREV, 'C' ) ) THEN
|
---|
277 | * Skip any leading zeros.
|
---|
278 | DO LASTV = 1, I-1
|
---|
279 | IF( V( LASTV, I ).NE.ZERO ) EXIT
|
---|
280 | END DO
|
---|
281 | DO J = I+1, K
|
---|
282 | T( J, I ) = -TAU( I ) * V( N-K+I , J )
|
---|
283 | END DO
|
---|
284 | J = MAX( LASTV, PREVLASTV )
|
---|
285 | *
|
---|
286 | * T(i+1:k,i) = -tau(i) * V(j:n-k+i,i+1:k)**T * V(j:n-k+i,i)
|
---|
287 | *
|
---|
288 | CALL DGEMV( 'Transpose', N-K+I-J, K-I, -TAU( I ),
|
---|
289 | $ V( J, I+1 ), LDV, V( J, I ), 1, ONE,
|
---|
290 | $ T( I+1, I ), 1 )
|
---|
291 | ELSE
|
---|
292 | * Skip any leading zeros.
|
---|
293 | DO LASTV = 1, I-1
|
---|
294 | IF( V( I, LASTV ).NE.ZERO ) EXIT
|
---|
295 | END DO
|
---|
296 | DO J = I+1, K
|
---|
297 | T( J, I ) = -TAU( I ) * V( J, N-K+I )
|
---|
298 | END DO
|
---|
299 | J = MAX( LASTV, PREVLASTV )
|
---|
300 | *
|
---|
301 | * T(i+1:k,i) = -tau(i) * V(i+1:k,j:n-k+i) * V(i,j:n-k+i)**T
|
---|
302 | *
|
---|
303 | CALL DGEMV( 'No transpose', K-I, N-K+I-J,
|
---|
304 | $ -TAU( I ), V( I+1, J ), LDV, V( I, J ), LDV,
|
---|
305 | $ ONE, T( I+1, I ), 1 )
|
---|
306 | END IF
|
---|
307 | *
|
---|
308 | * T(i+1:k,i) := T(i+1:k,i+1:k) * T(i+1:k,i)
|
---|
309 | *
|
---|
310 | CALL DTRMV( 'Lower', 'No transpose', 'Non-unit', K-I,
|
---|
311 | $ T( I+1, I+1 ), LDT, T( I+1, I ), 1 )
|
---|
312 | IF( I.GT.1 ) THEN
|
---|
313 | PREVLASTV = MIN( PREVLASTV, LASTV )
|
---|
314 | ELSE
|
---|
315 | PREVLASTV = LASTV
|
---|
316 | END IF
|
---|
317 | END IF
|
---|
318 | T( I, I ) = TAU( I )
|
---|
319 | END IF
|
---|
320 | END DO
|
---|
321 | END IF
|
---|
322 | RETURN
|
---|
323 | *
|
---|
324 | * End of DLARFT
|
---|
325 | *
|
---|
326 | END
|
---|