1 | // This file is part of Eigen, a lightweight C++ template library
|
---|
2 | // for linear algebra.
|
---|
3 | //
|
---|
4 | // Copyright (C) 2010-2011 Gael Guennebaud <gael.guennebaud@inria.fr>
|
---|
5 | //
|
---|
6 | // This Source Code Form is subject to the terms of the Mozilla
|
---|
7 | // Public License v. 2.0. If a copy of the MPL was not distributed
|
---|
8 | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
---|
9 |
|
---|
10 | #include "common.h"
|
---|
11 | #include <Eigen/LU>
|
---|
12 |
|
---|
13 | // computes an LU factorization of a general M-by-N matrix A using partial pivoting with row interchanges
|
---|
14 | EIGEN_LAPACK_FUNC(getrf,(int *m, int *n, RealScalar *pa, int *lda, int *ipiv, int *info))
|
---|
15 | {
|
---|
16 | *info = 0;
|
---|
17 | if(*m<0) *info = -1;
|
---|
18 | else if(*n<0) *info = -2;
|
---|
19 | else if(*lda<std::max(1,*m)) *info = -4;
|
---|
20 | if(*info!=0)
|
---|
21 | {
|
---|
22 | int e = -*info;
|
---|
23 | return xerbla_(SCALAR_SUFFIX_UP"GETRF", &e, 6);
|
---|
24 | }
|
---|
25 |
|
---|
26 | if(*m==0 || *n==0)
|
---|
27 | return 0;
|
---|
28 |
|
---|
29 | Scalar* a = reinterpret_cast<Scalar*>(pa);
|
---|
30 | int nb_transpositions;
|
---|
31 | int ret = int(Eigen::internal::partial_lu_impl<Scalar,ColMajor,int>
|
---|
32 | ::blocked_lu(*m, *n, a, *lda, ipiv, nb_transpositions));
|
---|
33 |
|
---|
34 | for(int i=0; i<std::min(*m,*n); ++i)
|
---|
35 | ipiv[i]++;
|
---|
36 |
|
---|
37 | if(ret>=0)
|
---|
38 | *info = ret+1;
|
---|
39 |
|
---|
40 | return 0;
|
---|
41 | }
|
---|
42 |
|
---|
43 | //GETRS solves a system of linear equations
|
---|
44 | // A * X = B or A' * X = B
|
---|
45 | // with a general N-by-N matrix A using the LU factorization computed by GETRF
|
---|
46 | EIGEN_LAPACK_FUNC(getrs,(char *trans, int *n, int *nrhs, RealScalar *pa, int *lda, int *ipiv, RealScalar *pb, int *ldb, int *info))
|
---|
47 | {
|
---|
48 | *info = 0;
|
---|
49 | if(OP(*trans)==INVALID) *info = -1;
|
---|
50 | else if(*n<0) *info = -2;
|
---|
51 | else if(*nrhs<0) *info = -3;
|
---|
52 | else if(*lda<std::max(1,*n)) *info = -5;
|
---|
53 | else if(*ldb<std::max(1,*n)) *info = -8;
|
---|
54 | if(*info!=0)
|
---|
55 | {
|
---|
56 | int e = -*info;
|
---|
57 | return xerbla_(SCALAR_SUFFIX_UP"GETRS", &e, 6);
|
---|
58 | }
|
---|
59 |
|
---|
60 | Scalar* a = reinterpret_cast<Scalar*>(pa);
|
---|
61 | Scalar* b = reinterpret_cast<Scalar*>(pb);
|
---|
62 | MatrixType lu(a,*n,*n,*lda);
|
---|
63 | MatrixType B(b,*n,*nrhs,*ldb);
|
---|
64 |
|
---|
65 | for(int i=0; i<*n; ++i)
|
---|
66 | ipiv[i]--;
|
---|
67 | if(OP(*trans)==NOTR)
|
---|
68 | {
|
---|
69 | B = PivotsType(ipiv,*n) * B;
|
---|
70 | lu.triangularView<UnitLower>().solveInPlace(B);
|
---|
71 | lu.triangularView<Upper>().solveInPlace(B);
|
---|
72 | }
|
---|
73 | else if(OP(*trans)==TR)
|
---|
74 | {
|
---|
75 | lu.triangularView<Upper>().transpose().solveInPlace(B);
|
---|
76 | lu.triangularView<UnitLower>().transpose().solveInPlace(B);
|
---|
77 | B = PivotsType(ipiv,*n).transpose() * B;
|
---|
78 | }
|
---|
79 | else if(OP(*trans)==ADJ)
|
---|
80 | {
|
---|
81 | lu.triangularView<Upper>().adjoint().solveInPlace(B);
|
---|
82 | lu.triangularView<UnitLower>().adjoint().solveInPlace(B);
|
---|
83 | B = PivotsType(ipiv,*n).transpose() * B;
|
---|
84 | }
|
---|
85 | for(int i=0; i<*n; ++i)
|
---|
86 | ipiv[i]++;
|
---|
87 |
|
---|
88 | return 0;
|
---|
89 | }
|
---|