1 | // This file is part of Eigen, a lightweight C++ template library
|
---|
2 | // for linear algebra.
|
---|
3 | //
|
---|
4 | // Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
|
---|
5 | //
|
---|
6 | // This Source Code Form is subject to the terms of the Mozilla
|
---|
7 | // Public License v. 2.0. If a copy of the MPL was not distributed
|
---|
8 | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
---|
9 |
|
---|
10 | #define EIGEN_NO_STATIC_ASSERT
|
---|
11 |
|
---|
12 | #include "main.h"
|
---|
13 |
|
---|
14 | template<bool IsInteger> struct adjoint_specific;
|
---|
15 |
|
---|
16 | template<> struct adjoint_specific<true> {
|
---|
17 | template<typename Vec, typename Mat, typename Scalar>
|
---|
18 | static void run(const Vec& v1, const Vec& v2, Vec& v3, const Mat& square, Scalar s1, Scalar s2) {
|
---|
19 | VERIFY(test_isApproxWithRef((s1 * v1 + s2 * v2).dot(v3), numext::conj(s1) * v1.dot(v3) + numext::conj(s2) * v2.dot(v3), 0));
|
---|
20 | VERIFY(test_isApproxWithRef(v3.dot(s1 * v1 + s2 * v2), s1*v3.dot(v1)+s2*v3.dot(v2), 0));
|
---|
21 |
|
---|
22 | // check compatibility of dot and adjoint
|
---|
23 | VERIFY(test_isApproxWithRef(v1.dot(square * v2), (square.adjoint() * v1).dot(v2), 0));
|
---|
24 | }
|
---|
25 | };
|
---|
26 |
|
---|
27 | template<> struct adjoint_specific<false> {
|
---|
28 | template<typename Vec, typename Mat, typename Scalar>
|
---|
29 | static void run(const Vec& v1, const Vec& v2, Vec& v3, const Mat& square, Scalar s1, Scalar s2) {
|
---|
30 | typedef typename NumTraits<Scalar>::Real RealScalar;
|
---|
31 | using std::abs;
|
---|
32 |
|
---|
33 | RealScalar ref = NumTraits<Scalar>::IsInteger ? RealScalar(0) : (std::max)((s1 * v1 + s2 * v2).norm(),v3.norm());
|
---|
34 | VERIFY(test_isApproxWithRef((s1 * v1 + s2 * v2).dot(v3), numext::conj(s1) * v1.dot(v3) + numext::conj(s2) * v2.dot(v3), ref));
|
---|
35 | VERIFY(test_isApproxWithRef(v3.dot(s1 * v1 + s2 * v2), s1*v3.dot(v1)+s2*v3.dot(v2), ref));
|
---|
36 |
|
---|
37 | VERIFY_IS_APPROX(v1.squaredNorm(), v1.norm() * v1.norm());
|
---|
38 | // check normalized() and normalize()
|
---|
39 | VERIFY_IS_APPROX(v1, v1.norm() * v1.normalized());
|
---|
40 | v3 = v1;
|
---|
41 | v3.normalize();
|
---|
42 | VERIFY_IS_APPROX(v1, v1.norm() * v3);
|
---|
43 | VERIFY_IS_APPROX(v3, v1.normalized());
|
---|
44 | VERIFY_IS_APPROX(v3.norm(), RealScalar(1));
|
---|
45 |
|
---|
46 | // check compatibility of dot and adjoint
|
---|
47 | ref = NumTraits<Scalar>::IsInteger ? 0 : (std::max)((std::max)(v1.norm(),v2.norm()),(std::max)((square * v2).norm(),(square.adjoint() * v1).norm()));
|
---|
48 | VERIFY(internal::isMuchSmallerThan(abs(v1.dot(square * v2) - (square.adjoint() * v1).dot(v2)), ref, test_precision<Scalar>()));
|
---|
49 |
|
---|
50 | // check that Random().normalized() works: tricky as the random xpr must be evaluated by
|
---|
51 | // normalized() in order to produce a consistent result.
|
---|
52 | VERIFY_IS_APPROX(Vec::Random(v1.size()).normalized().norm(), RealScalar(1));
|
---|
53 | }
|
---|
54 | };
|
---|
55 |
|
---|
56 | template<typename MatrixType> void adjoint(const MatrixType& m)
|
---|
57 | {
|
---|
58 | /* this test covers the following files:
|
---|
59 | Transpose.h Conjugate.h Dot.h
|
---|
60 | */
|
---|
61 | using std::abs;
|
---|
62 | typedef typename MatrixType::Index Index;
|
---|
63 | typedef typename MatrixType::Scalar Scalar;
|
---|
64 | typedef typename NumTraits<Scalar>::Real RealScalar;
|
---|
65 | typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> VectorType;
|
---|
66 | typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, MatrixType::RowsAtCompileTime> SquareMatrixType;
|
---|
67 |
|
---|
68 | Index rows = m.rows();
|
---|
69 | Index cols = m.cols();
|
---|
70 |
|
---|
71 | MatrixType m1 = MatrixType::Random(rows, cols),
|
---|
72 | m2 = MatrixType::Random(rows, cols),
|
---|
73 | m3(rows, cols),
|
---|
74 | square = SquareMatrixType::Random(rows, rows);
|
---|
75 | VectorType v1 = VectorType::Random(rows),
|
---|
76 | v2 = VectorType::Random(rows),
|
---|
77 | v3 = VectorType::Random(rows),
|
---|
78 | vzero = VectorType::Zero(rows);
|
---|
79 |
|
---|
80 | Scalar s1 = internal::random<Scalar>(),
|
---|
81 | s2 = internal::random<Scalar>();
|
---|
82 |
|
---|
83 | // check basic compatibility of adjoint, transpose, conjugate
|
---|
84 | VERIFY_IS_APPROX(m1.transpose().conjugate().adjoint(), m1);
|
---|
85 | VERIFY_IS_APPROX(m1.adjoint().conjugate().transpose(), m1);
|
---|
86 |
|
---|
87 | // check multiplicative behavior
|
---|
88 | VERIFY_IS_APPROX((m1.adjoint() * m2).adjoint(), m2.adjoint() * m1);
|
---|
89 | VERIFY_IS_APPROX((s1 * m1).adjoint(), numext::conj(s1) * m1.adjoint());
|
---|
90 |
|
---|
91 | // check basic properties of dot, squaredNorm
|
---|
92 | VERIFY_IS_APPROX(numext::conj(v1.dot(v2)), v2.dot(v1));
|
---|
93 | VERIFY_IS_APPROX(numext::real(v1.dot(v1)), v1.squaredNorm());
|
---|
94 |
|
---|
95 | adjoint_specific<NumTraits<Scalar>::IsInteger>::run(v1, v2, v3, square, s1, s2);
|
---|
96 |
|
---|
97 | VERIFY_IS_MUCH_SMALLER_THAN(abs(vzero.dot(v1)), static_cast<RealScalar>(1));
|
---|
98 |
|
---|
99 | // like in testBasicStuff, test operator() to check const-qualification
|
---|
100 | Index r = internal::random<Index>(0, rows-1),
|
---|
101 | c = internal::random<Index>(0, cols-1);
|
---|
102 | VERIFY_IS_APPROX(m1.conjugate()(r,c), numext::conj(m1(r,c)));
|
---|
103 | VERIFY_IS_APPROX(m1.adjoint()(c,r), numext::conj(m1(r,c)));
|
---|
104 |
|
---|
105 | // check inplace transpose
|
---|
106 | m3 = m1;
|
---|
107 | m3.transposeInPlace();
|
---|
108 | VERIFY_IS_APPROX(m3,m1.transpose());
|
---|
109 | m3.transposeInPlace();
|
---|
110 | VERIFY_IS_APPROX(m3,m1);
|
---|
111 |
|
---|
112 | // check inplace adjoint
|
---|
113 | m3 = m1;
|
---|
114 | m3.adjointInPlace();
|
---|
115 | VERIFY_IS_APPROX(m3,m1.adjoint());
|
---|
116 | m3.transposeInPlace();
|
---|
117 | VERIFY_IS_APPROX(m3,m1.conjugate());
|
---|
118 |
|
---|
119 | // check mixed dot product
|
---|
120 | typedef Matrix<RealScalar, MatrixType::RowsAtCompileTime, 1> RealVectorType;
|
---|
121 | RealVectorType rv1 = RealVectorType::Random(rows);
|
---|
122 | VERIFY_IS_APPROX(v1.dot(rv1.template cast<Scalar>()), v1.dot(rv1));
|
---|
123 | VERIFY_IS_APPROX(rv1.template cast<Scalar>().dot(v1), rv1.dot(v1));
|
---|
124 | }
|
---|
125 |
|
---|
126 | void test_adjoint()
|
---|
127 | {
|
---|
128 | for(int i = 0; i < g_repeat; i++) {
|
---|
129 | CALL_SUBTEST_1( adjoint(Matrix<float, 1, 1>()) );
|
---|
130 | CALL_SUBTEST_2( adjoint(Matrix3d()) );
|
---|
131 | CALL_SUBTEST_3( adjoint(Matrix4f()) );
|
---|
132 | CALL_SUBTEST_4( adjoint(MatrixXcf(internal::random<int>(1,EIGEN_TEST_MAX_SIZE/2), internal::random<int>(1,EIGEN_TEST_MAX_SIZE/2))) );
|
---|
133 | CALL_SUBTEST_5( adjoint(MatrixXi(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
|
---|
134 | CALL_SUBTEST_6( adjoint(MatrixXf(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
|
---|
135 | }
|
---|
136 | // test a large static matrix only once
|
---|
137 | CALL_SUBTEST_7( adjoint(Matrix<float, 100, 100>()) );
|
---|
138 |
|
---|
139 | #ifdef EIGEN_TEST_PART_4
|
---|
140 | {
|
---|
141 | MatrixXcf a(10,10), b(10,10);
|
---|
142 | VERIFY_RAISES_ASSERT(a = a.transpose());
|
---|
143 | VERIFY_RAISES_ASSERT(a = a.transpose() + b);
|
---|
144 | VERIFY_RAISES_ASSERT(a = b + a.transpose());
|
---|
145 | VERIFY_RAISES_ASSERT(a = a.conjugate().transpose());
|
---|
146 | VERIFY_RAISES_ASSERT(a = a.adjoint());
|
---|
147 | VERIFY_RAISES_ASSERT(a = a.adjoint() + b);
|
---|
148 | VERIFY_RAISES_ASSERT(a = b + a.adjoint());
|
---|
149 |
|
---|
150 | // no assertion should be triggered for these cases:
|
---|
151 | a.transpose() = a.transpose();
|
---|
152 | a.transpose() += a.transpose();
|
---|
153 | a.transpose() += a.transpose() + b;
|
---|
154 | a.transpose() = a.adjoint();
|
---|
155 | a.transpose() += a.adjoint();
|
---|
156 | a.transpose() += a.adjoint() + b;
|
---|
157 | }
|
---|
158 | #endif
|
---|
159 | }
|
---|
160 |
|
---|