1 | // This file is part of Eigen, a lightweight C++ template library
|
---|
2 | // for linear algebra.
|
---|
3 | //
|
---|
4 | // Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
|
---|
5 | //
|
---|
6 | // This Source Code Form is subject to the terms of the Mozilla
|
---|
7 | // Public License v. 2.0. If a copy of the MPL was not distributed
|
---|
8 | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
---|
9 |
|
---|
10 | #define EIGEN_NO_STATIC_ASSERT
|
---|
11 |
|
---|
12 | #include "main.h"
|
---|
13 |
|
---|
14 | template<typename MatrixType> void basicStuff(const MatrixType& m)
|
---|
15 | {
|
---|
16 | typedef typename MatrixType::Index Index;
|
---|
17 | typedef typename MatrixType::Scalar Scalar;
|
---|
18 | typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> VectorType;
|
---|
19 | typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, MatrixType::RowsAtCompileTime> SquareMatrixType;
|
---|
20 |
|
---|
21 | Index rows = m.rows();
|
---|
22 | Index cols = m.cols();
|
---|
23 |
|
---|
24 | // this test relies a lot on Random.h, and there's not much more that we can do
|
---|
25 | // to test it, hence I consider that we will have tested Random.h
|
---|
26 | MatrixType m1 = MatrixType::Random(rows, cols),
|
---|
27 | m2 = MatrixType::Random(rows, cols),
|
---|
28 | m3(rows, cols),
|
---|
29 | mzero = MatrixType::Zero(rows, cols),
|
---|
30 | square = Matrix<Scalar, MatrixType::RowsAtCompileTime, MatrixType::RowsAtCompileTime>::Random(rows, rows);
|
---|
31 | VectorType v1 = VectorType::Random(rows),
|
---|
32 | vzero = VectorType::Zero(rows);
|
---|
33 | SquareMatrixType sm1 = SquareMatrixType::Random(rows,rows), sm2(rows,rows);
|
---|
34 |
|
---|
35 | Scalar x = 0;
|
---|
36 | while(x == Scalar(0)) x = internal::random<Scalar>();
|
---|
37 |
|
---|
38 | Index r = internal::random<Index>(0, rows-1),
|
---|
39 | c = internal::random<Index>(0, cols-1);
|
---|
40 |
|
---|
41 | m1.coeffRef(r,c) = x;
|
---|
42 | VERIFY_IS_APPROX(x, m1.coeff(r,c));
|
---|
43 | m1(r,c) = x;
|
---|
44 | VERIFY_IS_APPROX(x, m1(r,c));
|
---|
45 | v1.coeffRef(r) = x;
|
---|
46 | VERIFY_IS_APPROX(x, v1.coeff(r));
|
---|
47 | v1(r) = x;
|
---|
48 | VERIFY_IS_APPROX(x, v1(r));
|
---|
49 | v1[r] = x;
|
---|
50 | VERIFY_IS_APPROX(x, v1[r]);
|
---|
51 |
|
---|
52 | VERIFY_IS_APPROX( v1, v1);
|
---|
53 | VERIFY_IS_NOT_APPROX( v1, 2*v1);
|
---|
54 | VERIFY_IS_MUCH_SMALLER_THAN( vzero, v1);
|
---|
55 | VERIFY_IS_MUCH_SMALLER_THAN( vzero, v1.squaredNorm());
|
---|
56 | VERIFY_IS_NOT_MUCH_SMALLER_THAN(v1, v1);
|
---|
57 | VERIFY_IS_APPROX( vzero, v1-v1);
|
---|
58 | VERIFY_IS_APPROX( m1, m1);
|
---|
59 | VERIFY_IS_NOT_APPROX( m1, 2*m1);
|
---|
60 | VERIFY_IS_MUCH_SMALLER_THAN( mzero, m1);
|
---|
61 | VERIFY_IS_NOT_MUCH_SMALLER_THAN(m1, m1);
|
---|
62 | VERIFY_IS_APPROX( mzero, m1-m1);
|
---|
63 |
|
---|
64 | // always test operator() on each read-only expression class,
|
---|
65 | // in order to check const-qualifiers.
|
---|
66 | // indeed, if an expression class (here Zero) is meant to be read-only,
|
---|
67 | // hence has no _write() method, the corresponding MatrixBase method (here zero())
|
---|
68 | // should return a const-qualified object so that it is the const-qualified
|
---|
69 | // operator() that gets called, which in turn calls _read().
|
---|
70 | VERIFY_IS_MUCH_SMALLER_THAN(MatrixType::Zero(rows,cols)(r,c), static_cast<Scalar>(1));
|
---|
71 |
|
---|
72 | // now test copying a row-vector into a (column-)vector and conversely.
|
---|
73 | square.col(r) = square.row(r).eval();
|
---|
74 | Matrix<Scalar, 1, MatrixType::RowsAtCompileTime> rv(rows);
|
---|
75 | Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> cv(rows);
|
---|
76 | rv = square.row(r);
|
---|
77 | cv = square.col(r);
|
---|
78 |
|
---|
79 | VERIFY_IS_APPROX(rv, cv.transpose());
|
---|
80 |
|
---|
81 | if(cols!=1 && rows!=1 && MatrixType::SizeAtCompileTime!=Dynamic)
|
---|
82 | {
|
---|
83 | VERIFY_RAISES_ASSERT(m1 = (m2.block(0,0, rows-1, cols-1)));
|
---|
84 | }
|
---|
85 |
|
---|
86 | if(cols!=1 && rows!=1)
|
---|
87 | {
|
---|
88 | VERIFY_RAISES_ASSERT(m1[0]);
|
---|
89 | VERIFY_RAISES_ASSERT((m1+m1)[0]);
|
---|
90 | }
|
---|
91 |
|
---|
92 | VERIFY_IS_APPROX(m3 = m1,m1);
|
---|
93 | MatrixType m4;
|
---|
94 | VERIFY_IS_APPROX(m4 = m1,m1);
|
---|
95 |
|
---|
96 | m3.real() = m1.real();
|
---|
97 | VERIFY_IS_APPROX(static_cast<const MatrixType&>(m3).real(), static_cast<const MatrixType&>(m1).real());
|
---|
98 | VERIFY_IS_APPROX(static_cast<const MatrixType&>(m3).real(), m1.real());
|
---|
99 |
|
---|
100 | // check == / != operators
|
---|
101 | VERIFY(m1==m1);
|
---|
102 | VERIFY(m1!=m2);
|
---|
103 | VERIFY(!(m1==m2));
|
---|
104 | VERIFY(!(m1!=m1));
|
---|
105 | m1 = m2;
|
---|
106 | VERIFY(m1==m2);
|
---|
107 | VERIFY(!(m1!=m2));
|
---|
108 |
|
---|
109 | // check automatic transposition
|
---|
110 | sm2.setZero();
|
---|
111 | for(typename MatrixType::Index i=0;i<rows;++i)
|
---|
112 | sm2.col(i) = sm1.row(i);
|
---|
113 | VERIFY_IS_APPROX(sm2,sm1.transpose());
|
---|
114 |
|
---|
115 | sm2.setZero();
|
---|
116 | for(typename MatrixType::Index i=0;i<rows;++i)
|
---|
117 | sm2.col(i).noalias() = sm1.row(i);
|
---|
118 | VERIFY_IS_APPROX(sm2,sm1.transpose());
|
---|
119 |
|
---|
120 | sm2.setZero();
|
---|
121 | for(typename MatrixType::Index i=0;i<rows;++i)
|
---|
122 | sm2.col(i).noalias() += sm1.row(i);
|
---|
123 | VERIFY_IS_APPROX(sm2,sm1.transpose());
|
---|
124 |
|
---|
125 | sm2.setZero();
|
---|
126 | for(typename MatrixType::Index i=0;i<rows;++i)
|
---|
127 | sm2.col(i).noalias() -= sm1.row(i);
|
---|
128 | VERIFY_IS_APPROX(sm2,-sm1.transpose());
|
---|
129 | }
|
---|
130 |
|
---|
131 | template<typename MatrixType> void basicStuffComplex(const MatrixType& m)
|
---|
132 | {
|
---|
133 | typedef typename MatrixType::Index Index;
|
---|
134 | typedef typename MatrixType::Scalar Scalar;
|
---|
135 | typedef typename NumTraits<Scalar>::Real RealScalar;
|
---|
136 | typedef Matrix<RealScalar, MatrixType::RowsAtCompileTime, MatrixType::ColsAtCompileTime> RealMatrixType;
|
---|
137 |
|
---|
138 | Index rows = m.rows();
|
---|
139 | Index cols = m.cols();
|
---|
140 |
|
---|
141 | Scalar s1 = internal::random<Scalar>(),
|
---|
142 | s2 = internal::random<Scalar>();
|
---|
143 |
|
---|
144 | VERIFY(numext::real(s1)==numext::real_ref(s1));
|
---|
145 | VERIFY(numext::imag(s1)==numext::imag_ref(s1));
|
---|
146 | numext::real_ref(s1) = numext::real(s2);
|
---|
147 | numext::imag_ref(s1) = numext::imag(s2);
|
---|
148 | VERIFY(internal::isApprox(s1, s2, NumTraits<RealScalar>::epsilon()));
|
---|
149 | // extended precision in Intel FPUs means that s1 == s2 in the line above is not guaranteed.
|
---|
150 |
|
---|
151 | RealMatrixType rm1 = RealMatrixType::Random(rows,cols),
|
---|
152 | rm2 = RealMatrixType::Random(rows,cols);
|
---|
153 | MatrixType cm(rows,cols);
|
---|
154 | cm.real() = rm1;
|
---|
155 | cm.imag() = rm2;
|
---|
156 | VERIFY_IS_APPROX(static_cast<const MatrixType&>(cm).real(), rm1);
|
---|
157 | VERIFY_IS_APPROX(static_cast<const MatrixType&>(cm).imag(), rm2);
|
---|
158 | rm1.setZero();
|
---|
159 | rm2.setZero();
|
---|
160 | rm1 = cm.real();
|
---|
161 | rm2 = cm.imag();
|
---|
162 | VERIFY_IS_APPROX(static_cast<const MatrixType&>(cm).real(), rm1);
|
---|
163 | VERIFY_IS_APPROX(static_cast<const MatrixType&>(cm).imag(), rm2);
|
---|
164 | cm.real().setZero();
|
---|
165 | VERIFY(static_cast<const MatrixType&>(cm).real().isZero());
|
---|
166 | VERIFY(!static_cast<const MatrixType&>(cm).imag().isZero());
|
---|
167 | }
|
---|
168 |
|
---|
169 | #ifdef EIGEN_TEST_PART_2
|
---|
170 | void casting()
|
---|
171 | {
|
---|
172 | Matrix4f m = Matrix4f::Random(), m2;
|
---|
173 | Matrix4d n = m.cast<double>();
|
---|
174 | VERIFY(m.isApprox(n.cast<float>()));
|
---|
175 | m2 = m.cast<float>(); // check the specialization when NewType == Type
|
---|
176 | VERIFY(m.isApprox(m2));
|
---|
177 | }
|
---|
178 | #endif
|
---|
179 |
|
---|
180 | template <typename Scalar>
|
---|
181 | void fixedSizeMatrixConstruction()
|
---|
182 | {
|
---|
183 | const Scalar raw[3] = {1,2,3};
|
---|
184 | Matrix<Scalar,3,1> m(raw);
|
---|
185 | Array<Scalar,3,1> a(raw);
|
---|
186 | VERIFY(m(0) == 1);
|
---|
187 | VERIFY(m(1) == 2);
|
---|
188 | VERIFY(m(2) == 3);
|
---|
189 | VERIFY(a(0) == 1);
|
---|
190 | VERIFY(a(1) == 2);
|
---|
191 | VERIFY(a(2) == 3);
|
---|
192 | }
|
---|
193 |
|
---|
194 | void test_basicstuff()
|
---|
195 | {
|
---|
196 | for(int i = 0; i < g_repeat; i++) {
|
---|
197 | CALL_SUBTEST_1( basicStuff(Matrix<float, 1, 1>()) );
|
---|
198 | CALL_SUBTEST_2( basicStuff(Matrix4d()) );
|
---|
199 | CALL_SUBTEST_3( basicStuff(MatrixXcf(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
|
---|
200 | CALL_SUBTEST_4( basicStuff(MatrixXi(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
|
---|
201 | CALL_SUBTEST_5( basicStuff(MatrixXcd(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
|
---|
202 | CALL_SUBTEST_6( basicStuff(Matrix<float, 100, 100>()) );
|
---|
203 | CALL_SUBTEST_7( basicStuff(Matrix<long double,Dynamic,Dynamic>(internal::random<int>(1,EIGEN_TEST_MAX_SIZE),internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
|
---|
204 |
|
---|
205 | CALL_SUBTEST_3( basicStuffComplex(MatrixXcf(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
|
---|
206 | CALL_SUBTEST_5( basicStuffComplex(MatrixXcd(internal::random<int>(1,EIGEN_TEST_MAX_SIZE), internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
|
---|
207 | }
|
---|
208 |
|
---|
209 | CALL_SUBTEST_1(fixedSizeMatrixConstruction<unsigned char>());
|
---|
210 | CALL_SUBTEST_1(fixedSizeMatrixConstruction<double>());
|
---|
211 | CALL_SUBTEST_1(fixedSizeMatrixConstruction<double>());
|
---|
212 |
|
---|
213 | CALL_SUBTEST_2(casting());
|
---|
214 | }
|
---|