1 | // This file is part of Eigen, a lightweight C++ template library
|
---|
2 | // for linear algebra.
|
---|
3 | //
|
---|
4 | // Copyright (C) 2012 Desire Nuentsa <desire.nuentsa_wakam@inria.fr>
|
---|
5 | // Copyright (C) 2012 Gael Guennebaud <gael.guennebaud@inria.fr>
|
---|
6 | //
|
---|
7 | // This Source Code Form is subject to the terms of the Mozilla
|
---|
8 | // Public License v. 2.0. If a copy of the MPL was not distributed
|
---|
9 | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
---|
10 |
|
---|
11 | #include <iostream>
|
---|
12 | #include <fstream>
|
---|
13 | #include <iomanip>
|
---|
14 |
|
---|
15 | #include "main.h"
|
---|
16 | #include <Eigen/LevenbergMarquardt>
|
---|
17 | using namespace std;
|
---|
18 | using namespace Eigen;
|
---|
19 |
|
---|
20 | template<typename Scalar>
|
---|
21 | struct DenseLM : DenseFunctor<Scalar>
|
---|
22 | {
|
---|
23 | typedef DenseFunctor<Scalar> Base;
|
---|
24 | typedef typename Base::JacobianType JacobianType;
|
---|
25 | typedef Matrix<Scalar,Dynamic,1> VectorType;
|
---|
26 |
|
---|
27 | DenseLM(int n, int m) : DenseFunctor<Scalar>(n,m)
|
---|
28 | { }
|
---|
29 |
|
---|
30 | VectorType model(const VectorType& uv, VectorType& x)
|
---|
31 | {
|
---|
32 | VectorType y; // Should change to use expression template
|
---|
33 | int m = Base::values();
|
---|
34 | int n = Base::inputs();
|
---|
35 | eigen_assert(uv.size()%2 == 0);
|
---|
36 | eigen_assert(uv.size() == n);
|
---|
37 | eigen_assert(x.size() == m);
|
---|
38 | y.setZero(m);
|
---|
39 | int half = n/2;
|
---|
40 | VectorBlock<const VectorType> u(uv, 0, half);
|
---|
41 | VectorBlock<const VectorType> v(uv, half, half);
|
---|
42 | for (int j = 0; j < m; j++)
|
---|
43 | {
|
---|
44 | for (int i = 0; i < half; i++)
|
---|
45 | y(j) += u(i)*std::exp(-(x(j)-i)*(x(j)-i)/(v(i)*v(i)));
|
---|
46 | }
|
---|
47 | return y;
|
---|
48 |
|
---|
49 | }
|
---|
50 | void initPoints(VectorType& uv_ref, VectorType& x)
|
---|
51 | {
|
---|
52 | m_x = x;
|
---|
53 | m_y = this->model(uv_ref, x);
|
---|
54 | }
|
---|
55 |
|
---|
56 | int operator()(const VectorType& uv, VectorType& fvec)
|
---|
57 | {
|
---|
58 |
|
---|
59 | int m = Base::values();
|
---|
60 | int n = Base::inputs();
|
---|
61 | eigen_assert(uv.size()%2 == 0);
|
---|
62 | eigen_assert(uv.size() == n);
|
---|
63 | eigen_assert(fvec.size() == m);
|
---|
64 | int half = n/2;
|
---|
65 | VectorBlock<const VectorType> u(uv, 0, half);
|
---|
66 | VectorBlock<const VectorType> v(uv, half, half);
|
---|
67 | for (int j = 0; j < m; j++)
|
---|
68 | {
|
---|
69 | fvec(j) = m_y(j);
|
---|
70 | for (int i = 0; i < half; i++)
|
---|
71 | {
|
---|
72 | fvec(j) -= u(i) *std::exp(-(m_x(j)-i)*(m_x(j)-i)/(v(i)*v(i)));
|
---|
73 | }
|
---|
74 | }
|
---|
75 |
|
---|
76 | return 0;
|
---|
77 | }
|
---|
78 | int df(const VectorType& uv, JacobianType& fjac)
|
---|
79 | {
|
---|
80 | int m = Base::values();
|
---|
81 | int n = Base::inputs();
|
---|
82 | eigen_assert(n == uv.size());
|
---|
83 | eigen_assert(fjac.rows() == m);
|
---|
84 | eigen_assert(fjac.cols() == n);
|
---|
85 | int half = n/2;
|
---|
86 | VectorBlock<const VectorType> u(uv, 0, half);
|
---|
87 | VectorBlock<const VectorType> v(uv, half, half);
|
---|
88 | for (int j = 0; j < m; j++)
|
---|
89 | {
|
---|
90 | for (int i = 0; i < half; i++)
|
---|
91 | {
|
---|
92 | fjac.coeffRef(j,i) = -std::exp(-(m_x(j)-i)*(m_x(j)-i)/(v(i)*v(i)));
|
---|
93 | fjac.coeffRef(j,i+half) = -2.*u(i)*(m_x(j)-i)*(m_x(j)-i)/(std::pow(v(i),3)) * std::exp(-(m_x(j)-i)*(m_x(j)-i)/(v(i)*v(i)));
|
---|
94 | }
|
---|
95 | }
|
---|
96 | return 0;
|
---|
97 | }
|
---|
98 | VectorType m_x, m_y; //Data Points
|
---|
99 | };
|
---|
100 |
|
---|
101 | template<typename FunctorType, typename VectorType>
|
---|
102 | int test_minimizeLM(FunctorType& functor, VectorType& uv)
|
---|
103 | {
|
---|
104 | LevenbergMarquardt<FunctorType> lm(functor);
|
---|
105 | LevenbergMarquardtSpace::Status info;
|
---|
106 |
|
---|
107 | info = lm.minimize(uv);
|
---|
108 |
|
---|
109 | VERIFY_IS_EQUAL(info, 1);
|
---|
110 | //FIXME Check other parameters
|
---|
111 | return info;
|
---|
112 | }
|
---|
113 |
|
---|
114 | template<typename FunctorType, typename VectorType>
|
---|
115 | int test_lmder(FunctorType& functor, VectorType& uv)
|
---|
116 | {
|
---|
117 | typedef typename VectorType::Scalar Scalar;
|
---|
118 | LevenbergMarquardtSpace::Status info;
|
---|
119 | LevenbergMarquardt<FunctorType> lm(functor);
|
---|
120 | info = lm.lmder1(uv);
|
---|
121 |
|
---|
122 | VERIFY_IS_EQUAL(info, 1);
|
---|
123 | //FIXME Check other parameters
|
---|
124 | return info;
|
---|
125 | }
|
---|
126 |
|
---|
127 | template<typename FunctorType, typename VectorType>
|
---|
128 | int test_minimizeSteps(FunctorType& functor, VectorType& uv)
|
---|
129 | {
|
---|
130 | LevenbergMarquardtSpace::Status info;
|
---|
131 | LevenbergMarquardt<FunctorType> lm(functor);
|
---|
132 | info = lm.minimizeInit(uv);
|
---|
133 | if (info==LevenbergMarquardtSpace::ImproperInputParameters)
|
---|
134 | return info;
|
---|
135 | do
|
---|
136 | {
|
---|
137 | info = lm.minimizeOneStep(uv);
|
---|
138 | } while (info==LevenbergMarquardtSpace::Running);
|
---|
139 |
|
---|
140 | VERIFY_IS_EQUAL(info, 1);
|
---|
141 | //FIXME Check other parameters
|
---|
142 | return info;
|
---|
143 | }
|
---|
144 |
|
---|
145 | template<typename T>
|
---|
146 | void test_denseLM_T()
|
---|
147 | {
|
---|
148 | typedef Matrix<T,Dynamic,1> VectorType;
|
---|
149 |
|
---|
150 | int inputs = 10;
|
---|
151 | int values = 1000;
|
---|
152 | DenseLM<T> dense_gaussian(inputs, values);
|
---|
153 | VectorType uv(inputs),uv_ref(inputs);
|
---|
154 | VectorType x(values);
|
---|
155 |
|
---|
156 | // Generate the reference solution
|
---|
157 | uv_ref << -2, 1, 4 ,8, 6, 1.8, 1.2, 1.1, 1.9 , 3;
|
---|
158 |
|
---|
159 | //Generate the reference data points
|
---|
160 | x.setRandom();
|
---|
161 | x = 10*x;
|
---|
162 | x.array() += 10;
|
---|
163 | dense_gaussian.initPoints(uv_ref, x);
|
---|
164 |
|
---|
165 | // Generate the initial parameters
|
---|
166 | VectorBlock<VectorType> u(uv, 0, inputs/2);
|
---|
167 | VectorBlock<VectorType> v(uv, inputs/2, inputs/2);
|
---|
168 |
|
---|
169 | // Solve the optimization problem
|
---|
170 |
|
---|
171 | //Solve in one go
|
---|
172 | u.setOnes(); v.setOnes();
|
---|
173 | test_minimizeLM(dense_gaussian, uv);
|
---|
174 |
|
---|
175 | //Solve until the machine precision
|
---|
176 | u.setOnes(); v.setOnes();
|
---|
177 | test_lmder(dense_gaussian, uv);
|
---|
178 |
|
---|
179 | // Solve step by step
|
---|
180 | v.setOnes(); u.setOnes();
|
---|
181 | test_minimizeSteps(dense_gaussian, uv);
|
---|
182 |
|
---|
183 | }
|
---|
184 |
|
---|
185 | void test_denseLM()
|
---|
186 | {
|
---|
187 | CALL_SUBTEST_2(test_denseLM_T<double>());
|
---|
188 |
|
---|
189 | // CALL_SUBTEST_2(test_sparseLM_T<std::complex<double>());
|
---|
190 | }
|
---|