1 | // This file is part of Eigen, a lightweight C++ template library
|
---|
2 | // for linear algebra. Eigen itself is part of the KDE project.
|
---|
3 | //
|
---|
4 | // Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
|
---|
5 | //
|
---|
6 | // This Source Code Form is subject to the terms of the Mozilla
|
---|
7 | // Public License v. 2.0. If a copy of the MPL was not distributed
|
---|
8 | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
---|
9 |
|
---|
10 | #include "main.h"
|
---|
11 |
|
---|
12 | template<typename MatrixType> void adjoint(const MatrixType& m)
|
---|
13 | {
|
---|
14 | /* this test covers the following files:
|
---|
15 | Transpose.h Conjugate.h Dot.h
|
---|
16 | */
|
---|
17 |
|
---|
18 | typedef typename MatrixType::Scalar Scalar;
|
---|
19 | typedef typename NumTraits<Scalar>::Real RealScalar;
|
---|
20 | typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> VectorType;
|
---|
21 | typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, MatrixType::RowsAtCompileTime> SquareMatrixType;
|
---|
22 | int rows = m.rows();
|
---|
23 | int cols = m.cols();
|
---|
24 |
|
---|
25 | RealScalar largerEps = test_precision<RealScalar>();
|
---|
26 | if (ei_is_same_type<RealScalar,float>::ret)
|
---|
27 | largerEps = RealScalar(1e-3f);
|
---|
28 |
|
---|
29 | MatrixType m1 = MatrixType::Random(rows, cols),
|
---|
30 | m2 = MatrixType::Random(rows, cols),
|
---|
31 | m3(rows, cols),
|
---|
32 | square = SquareMatrixType::Random(rows, rows);
|
---|
33 | VectorType v1 = VectorType::Random(rows),
|
---|
34 | v2 = VectorType::Random(rows),
|
---|
35 | v3 = VectorType::Random(rows),
|
---|
36 | vzero = VectorType::Zero(rows);
|
---|
37 |
|
---|
38 | Scalar s1 = ei_random<Scalar>(),
|
---|
39 | s2 = ei_random<Scalar>();
|
---|
40 |
|
---|
41 | // check basic compatibility of adjoint, transpose, conjugate
|
---|
42 | VERIFY_IS_APPROX(m1.transpose().conjugate().adjoint(), m1);
|
---|
43 | VERIFY_IS_APPROX(m1.adjoint().conjugate().transpose(), m1);
|
---|
44 |
|
---|
45 | // check multiplicative behavior
|
---|
46 | VERIFY_IS_APPROX((m1.adjoint() * m2).adjoint(), m2.adjoint() * m1);
|
---|
47 | VERIFY_IS_APPROX((s1 * m1).adjoint(), ei_conj(s1) * m1.adjoint());
|
---|
48 |
|
---|
49 | // check basic properties of dot, norm, norm2
|
---|
50 | typedef typename NumTraits<Scalar>::Real RealScalar;
|
---|
51 | VERIFY(ei_isApprox((s1 * v1 + s2 * v2).eigen2_dot(v3), s1 * v1.eigen2_dot(v3) + s2 * v2.eigen2_dot(v3), largerEps));
|
---|
52 | VERIFY(ei_isApprox(v3.eigen2_dot(s1 * v1 + s2 * v2), ei_conj(s1)*v3.eigen2_dot(v1)+ei_conj(s2)*v3.eigen2_dot(v2), largerEps));
|
---|
53 | VERIFY_IS_APPROX(ei_conj(v1.eigen2_dot(v2)), v2.eigen2_dot(v1));
|
---|
54 | VERIFY_IS_APPROX(ei_real(v1.eigen2_dot(v1)), v1.squaredNorm());
|
---|
55 | if(NumTraits<Scalar>::HasFloatingPoint)
|
---|
56 | VERIFY_IS_APPROX(v1.squaredNorm(), v1.norm() * v1.norm());
|
---|
57 | VERIFY_IS_MUCH_SMALLER_THAN(ei_abs(vzero.eigen2_dot(v1)), static_cast<RealScalar>(1));
|
---|
58 | if(NumTraits<Scalar>::HasFloatingPoint)
|
---|
59 | VERIFY_IS_MUCH_SMALLER_THAN(vzero.norm(), static_cast<RealScalar>(1));
|
---|
60 |
|
---|
61 | // check compatibility of dot and adjoint
|
---|
62 | VERIFY(ei_isApprox(v1.eigen2_dot(square * v2), (square.adjoint() * v1).eigen2_dot(v2), largerEps));
|
---|
63 |
|
---|
64 | // like in testBasicStuff, test operator() to check const-qualification
|
---|
65 | int r = ei_random<int>(0, rows-1),
|
---|
66 | c = ei_random<int>(0, cols-1);
|
---|
67 | VERIFY_IS_APPROX(m1.conjugate()(r,c), ei_conj(m1(r,c)));
|
---|
68 | VERIFY_IS_APPROX(m1.adjoint()(c,r), ei_conj(m1(r,c)));
|
---|
69 |
|
---|
70 | if(NumTraits<Scalar>::HasFloatingPoint)
|
---|
71 | {
|
---|
72 | // check that Random().normalized() works: tricky as the random xpr must be evaluated by
|
---|
73 | // normalized() in order to produce a consistent result.
|
---|
74 | VERIFY_IS_APPROX(VectorType::Random(rows).normalized().norm(), RealScalar(1));
|
---|
75 | }
|
---|
76 |
|
---|
77 | // check inplace transpose
|
---|
78 | m3 = m1;
|
---|
79 | m3.transposeInPlace();
|
---|
80 | VERIFY_IS_APPROX(m3,m1.transpose());
|
---|
81 | m3.transposeInPlace();
|
---|
82 | VERIFY_IS_APPROX(m3,m1);
|
---|
83 |
|
---|
84 | }
|
---|
85 |
|
---|
86 | void test_eigen2_adjoint()
|
---|
87 | {
|
---|
88 | for(int i = 0; i < g_repeat; i++) {
|
---|
89 | CALL_SUBTEST_1( adjoint(Matrix<float, 1, 1>()) );
|
---|
90 | CALL_SUBTEST_2( adjoint(Matrix3d()) );
|
---|
91 | CALL_SUBTEST_3( adjoint(Matrix4f()) );
|
---|
92 | CALL_SUBTEST_4( adjoint(MatrixXcf(4, 4)) );
|
---|
93 | CALL_SUBTEST_5( adjoint(MatrixXi(8, 12)) );
|
---|
94 | CALL_SUBTEST_6( adjoint(MatrixXf(21, 21)) );
|
---|
95 | }
|
---|
96 | // test a large matrix only once
|
---|
97 | CALL_SUBTEST_7( adjoint(Matrix<float, 100, 100>()) );
|
---|
98 | }
|
---|
99 |
|
---|