1 | // This file is part of Eigen, a lightweight C++ template library
|
---|
2 | // for linear algebra. Eigen itself is part of the KDE project.
|
---|
3 | //
|
---|
4 | // Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr>
|
---|
5 | // Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
|
---|
6 | //
|
---|
7 | // This Source Code Form is subject to the terms of the Mozilla
|
---|
8 | // Public License v. 2.0. If a copy of the MPL was not distributed
|
---|
9 | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
---|
10 |
|
---|
11 | #include "main.h"
|
---|
12 | #include <functional>
|
---|
13 | #include <Eigen/Array>
|
---|
14 |
|
---|
15 | using namespace std;
|
---|
16 |
|
---|
17 | template<typename Scalar> struct AddIfNull {
|
---|
18 | const Scalar operator() (const Scalar a, const Scalar b) const {return a<=1e-3 ? b : a;}
|
---|
19 | enum { Cost = NumTraits<Scalar>::AddCost };
|
---|
20 | };
|
---|
21 |
|
---|
22 | template<typename MatrixType> void cwiseops(const MatrixType& m)
|
---|
23 | {
|
---|
24 | typedef typename MatrixType::Scalar Scalar;
|
---|
25 | typedef typename NumTraits<Scalar>::Real RealScalar;
|
---|
26 | typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> VectorType;
|
---|
27 |
|
---|
28 | int rows = m.rows();
|
---|
29 | int cols = m.cols();
|
---|
30 |
|
---|
31 | MatrixType m1 = MatrixType::Random(rows, cols),
|
---|
32 | m2 = MatrixType::Random(rows, cols),
|
---|
33 | m3(rows, cols),
|
---|
34 | m4(rows, cols),
|
---|
35 | mzero = MatrixType::Zero(rows, cols),
|
---|
36 | mones = MatrixType::Ones(rows, cols),
|
---|
37 | identity = Matrix<Scalar, MatrixType::RowsAtCompileTime, MatrixType::RowsAtCompileTime>
|
---|
38 | ::Identity(rows, rows);
|
---|
39 | VectorType vzero = VectorType::Zero(rows),
|
---|
40 | vones = VectorType::Ones(rows),
|
---|
41 | v3(rows);
|
---|
42 |
|
---|
43 | int r = ei_random<int>(0, rows-1),
|
---|
44 | c = ei_random<int>(0, cols-1);
|
---|
45 |
|
---|
46 | Scalar s1 = ei_random<Scalar>();
|
---|
47 |
|
---|
48 | // test Zero, Ones, Constant, and the set* variants
|
---|
49 | m3 = MatrixType::Constant(rows, cols, s1);
|
---|
50 | for (int j=0; j<cols; ++j)
|
---|
51 | for (int i=0; i<rows; ++i)
|
---|
52 | {
|
---|
53 | VERIFY_IS_APPROX(mzero(i,j), Scalar(0));
|
---|
54 | VERIFY_IS_APPROX(mones(i,j), Scalar(1));
|
---|
55 | VERIFY_IS_APPROX(m3(i,j), s1);
|
---|
56 | }
|
---|
57 | VERIFY(mzero.isZero());
|
---|
58 | VERIFY(mones.isOnes());
|
---|
59 | VERIFY(m3.isConstant(s1));
|
---|
60 | VERIFY(identity.isIdentity());
|
---|
61 | VERIFY_IS_APPROX(m4.setConstant(s1), m3);
|
---|
62 | VERIFY_IS_APPROX(m4.setConstant(rows,cols,s1), m3);
|
---|
63 | VERIFY_IS_APPROX(m4.setZero(), mzero);
|
---|
64 | VERIFY_IS_APPROX(m4.setZero(rows,cols), mzero);
|
---|
65 | VERIFY_IS_APPROX(m4.setOnes(), mones);
|
---|
66 | VERIFY_IS_APPROX(m4.setOnes(rows,cols), mones);
|
---|
67 | m4.fill(s1);
|
---|
68 | VERIFY_IS_APPROX(m4, m3);
|
---|
69 |
|
---|
70 | VERIFY_IS_APPROX(v3.setConstant(rows, s1), VectorType::Constant(rows,s1));
|
---|
71 | VERIFY_IS_APPROX(v3.setZero(rows), vzero);
|
---|
72 | VERIFY_IS_APPROX(v3.setOnes(rows), vones);
|
---|
73 |
|
---|
74 | m2 = m2.template binaryExpr<AddIfNull<Scalar> >(mones);
|
---|
75 |
|
---|
76 | VERIFY_IS_APPROX(m1.cwise().pow(2), m1.cwise().abs2());
|
---|
77 | VERIFY_IS_APPROX(m1.cwise().pow(2), m1.cwise().square());
|
---|
78 | VERIFY_IS_APPROX(m1.cwise().pow(3), m1.cwise().cube());
|
---|
79 |
|
---|
80 | VERIFY_IS_APPROX(m1 + mones, m1.cwise()+Scalar(1));
|
---|
81 | VERIFY_IS_APPROX(m1 - mones, m1.cwise()-Scalar(1));
|
---|
82 | m3 = m1; m3.cwise() += 1;
|
---|
83 | VERIFY_IS_APPROX(m1 + mones, m3);
|
---|
84 | m3 = m1; m3.cwise() -= 1;
|
---|
85 | VERIFY_IS_APPROX(m1 - mones, m3);
|
---|
86 |
|
---|
87 | VERIFY_IS_APPROX(m2, m2.cwise() * mones);
|
---|
88 | VERIFY_IS_APPROX(m1.cwise() * m2, m2.cwise() * m1);
|
---|
89 | m3 = m1;
|
---|
90 | m3.cwise() *= m2;
|
---|
91 | VERIFY_IS_APPROX(m3, m1.cwise() * m2);
|
---|
92 |
|
---|
93 | VERIFY_IS_APPROX(mones, m2.cwise()/m2);
|
---|
94 | if(NumTraits<Scalar>::HasFloatingPoint)
|
---|
95 | {
|
---|
96 | VERIFY_IS_APPROX(m1.cwise() / m2, m1.cwise() * (m2.cwise().inverse()));
|
---|
97 | m3 = m1.cwise().abs().cwise().sqrt();
|
---|
98 | VERIFY_IS_APPROX(m3.cwise().square(), m1.cwise().abs());
|
---|
99 | VERIFY_IS_APPROX(m1.cwise().square().cwise().sqrt(), m1.cwise().abs());
|
---|
100 | VERIFY_IS_APPROX(m1.cwise().abs().cwise().log().cwise().exp() , m1.cwise().abs());
|
---|
101 |
|
---|
102 | VERIFY_IS_APPROX(m1.cwise().pow(2), m1.cwise().square());
|
---|
103 | m3 = (m1.cwise().abs().cwise()<=RealScalar(0.01)).select(mones,m1);
|
---|
104 | VERIFY_IS_APPROX(m3.cwise().pow(-1), m3.cwise().inverse());
|
---|
105 | m3 = m1.cwise().abs();
|
---|
106 | VERIFY_IS_APPROX(m3.cwise().pow(RealScalar(0.5)), m3.cwise().sqrt());
|
---|
107 |
|
---|
108 | // VERIFY_IS_APPROX(m1.cwise().tan(), m1.cwise().sin().cwise() / m1.cwise().cos());
|
---|
109 | VERIFY_IS_APPROX(mones, m1.cwise().sin().cwise().square() + m1.cwise().cos().cwise().square());
|
---|
110 | m3 = m1;
|
---|
111 | m3.cwise() /= m2;
|
---|
112 | VERIFY_IS_APPROX(m3, m1.cwise() / m2);
|
---|
113 | }
|
---|
114 |
|
---|
115 | // check min
|
---|
116 | VERIFY_IS_APPROX( m1.cwise().min(m2), m2.cwise().min(m1) );
|
---|
117 | VERIFY_IS_APPROX( m1.cwise().min(m1+mones), m1 );
|
---|
118 | VERIFY_IS_APPROX( m1.cwise().min(m1-mones), m1-mones );
|
---|
119 |
|
---|
120 | // check max
|
---|
121 | VERIFY_IS_APPROX( m1.cwise().max(m2), m2.cwise().max(m1) );
|
---|
122 | VERIFY_IS_APPROX( m1.cwise().max(m1-mones), m1 );
|
---|
123 | VERIFY_IS_APPROX( m1.cwise().max(m1+mones), m1+mones );
|
---|
124 |
|
---|
125 | VERIFY( (m1.cwise() == m1).all() );
|
---|
126 | VERIFY( (m1.cwise() != m2).any() );
|
---|
127 | VERIFY(!(m1.cwise() == (m1+mones)).any() );
|
---|
128 | if (rows*cols>1)
|
---|
129 | {
|
---|
130 | m3 = m1;
|
---|
131 | m3(r,c) += 1;
|
---|
132 | VERIFY( (m1.cwise() == m3).any() );
|
---|
133 | VERIFY( !(m1.cwise() == m3).all() );
|
---|
134 | }
|
---|
135 | VERIFY( (m1.cwise().min(m2).cwise() <= m2).all() );
|
---|
136 | VERIFY( (m1.cwise().max(m2).cwise() >= m2).all() );
|
---|
137 | VERIFY( (m1.cwise().min(m2).cwise() < (m1+mones)).all() );
|
---|
138 | VERIFY( (m1.cwise().max(m2).cwise() > (m1-mones)).all() );
|
---|
139 |
|
---|
140 | VERIFY( (m1.cwise()<m1.unaryExpr(bind2nd(plus<Scalar>(), Scalar(1)))).all() );
|
---|
141 | VERIFY( !(m1.cwise()<m1.unaryExpr(bind2nd(minus<Scalar>(), Scalar(1)))).all() );
|
---|
142 | VERIFY( !(m1.cwise()>m1.unaryExpr(bind2nd(plus<Scalar>(), Scalar(1)))).any() );
|
---|
143 | }
|
---|
144 |
|
---|
145 | void test_eigen2_cwiseop()
|
---|
146 | {
|
---|
147 | for(int i = 0; i < g_repeat ; i++) {
|
---|
148 | CALL_SUBTEST_1( cwiseops(Matrix<float, 1, 1>()) );
|
---|
149 | CALL_SUBTEST_2( cwiseops(Matrix4d()) );
|
---|
150 | CALL_SUBTEST_3( cwiseops(MatrixXf(3, 3)) );
|
---|
151 | CALL_SUBTEST_3( cwiseops(MatrixXf(22, 22)) );
|
---|
152 | CALL_SUBTEST_4( cwiseops(MatrixXi(8, 12)) );
|
---|
153 | CALL_SUBTEST_5( cwiseops(MatrixXd(20, 20)) );
|
---|
154 | }
|
---|
155 | }
|
---|