source: pacpussensors/trunk/Vislab/lib3dv-1.2.0/lib3dv/eigen/test/eigen2/eigen2_eigensolver.cpp

Last change on this file was 136, checked in by ldecherf, 8 years ago

Doc

File size: 5.3 KB
Line 
1// This file is part of Eigen, a lightweight C++ template library
2// for linear algebra. Eigen itself is part of the KDE project.
3//
4// Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr>
5//
6// This Source Code Form is subject to the terms of the Mozilla
7// Public License v. 2.0. If a copy of the MPL was not distributed
8// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
9
10#include "main.h"
11#include <Eigen/QR>
12
13#ifdef HAS_GSL
14#include "gsl_helper.h"
15#endif
16
17template<typename MatrixType> void selfadjointeigensolver(const MatrixType& m)
18{
19 /* this test covers the following files:
20 EigenSolver.h, SelfAdjointEigenSolver.h (and indirectly: Tridiagonalization.h)
21 */
22 int rows = m.rows();
23 int cols = m.cols();
24
25 typedef typename MatrixType::Scalar Scalar;
26 typedef typename NumTraits<Scalar>::Real RealScalar;
27 typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> VectorType;
28 typedef Matrix<RealScalar, MatrixType::RowsAtCompileTime, 1> RealVectorType;
29 typedef typename std::complex<typename NumTraits<typename MatrixType::Scalar>::Real> Complex;
30
31 RealScalar largerEps = 10*test_precision<RealScalar>();
32
33 MatrixType a = MatrixType::Random(rows,cols);
34 MatrixType a1 = MatrixType::Random(rows,cols);
35 MatrixType symmA = a.adjoint() * a + a1.adjoint() * a1;
36
37 MatrixType b = MatrixType::Random(rows,cols);
38 MatrixType b1 = MatrixType::Random(rows,cols);
39 MatrixType symmB = b.adjoint() * b + b1.adjoint() * b1;
40
41 SelfAdjointEigenSolver<MatrixType> eiSymm(symmA);
42 // generalized eigen pb
43 SelfAdjointEigenSolver<MatrixType> eiSymmGen(symmA, symmB);
44
45 #ifdef HAS_GSL
46 if (ei_is_same_type<RealScalar,double>::ret)
47 {
48 typedef GslTraits<Scalar> Gsl;
49 typename Gsl::Matrix gEvec=0, gSymmA=0, gSymmB=0;
50 typename GslTraits<RealScalar>::Vector gEval=0;
51 RealVectorType _eval;
52 MatrixType _evec;
53 convert<MatrixType>(symmA, gSymmA);
54 convert<MatrixType>(symmB, gSymmB);
55 convert<MatrixType>(symmA, gEvec);
56 gEval = GslTraits<RealScalar>::createVector(rows);
57
58 Gsl::eigen_symm(gSymmA, gEval, gEvec);
59 convert(gEval, _eval);
60 convert(gEvec, _evec);
61
62 // test gsl itself !
63 VERIFY((symmA * _evec).isApprox(_evec * _eval.asDiagonal(), largerEps));
64
65 // compare with eigen
66 VERIFY_IS_APPROX(_eval, eiSymm.eigenvalues());
67 VERIFY_IS_APPROX(_evec.cwise().abs(), eiSymm.eigenvectors().cwise().abs());
68
69 // generalized pb
70 Gsl::eigen_symm_gen(gSymmA, gSymmB, gEval, gEvec);
71 convert(gEval, _eval);
72 convert(gEvec, _evec);
73 // test GSL itself:
74 VERIFY((symmA * _evec).isApprox(symmB * (_evec * _eval.asDiagonal()), largerEps));
75
76 // compare with eigen
77 MatrixType normalized_eivec = eiSymmGen.eigenvectors()*eiSymmGen.eigenvectors().colwise().norm().asDiagonal().inverse();
78 VERIFY_IS_APPROX(_eval, eiSymmGen.eigenvalues());
79 VERIFY_IS_APPROX(_evec.cwiseAbs(), normalized_eivec.cwiseAbs());
80
81 Gsl::free(gSymmA);
82 Gsl::free(gSymmB);
83 GslTraits<RealScalar>::free(gEval);
84 Gsl::free(gEvec);
85 }
86 #endif
87
88 VERIFY((symmA * eiSymm.eigenvectors()).isApprox(
89 eiSymm.eigenvectors() * eiSymm.eigenvalues().asDiagonal(), largerEps));
90
91 // generalized eigen problem Ax = lBx
92 VERIFY((symmA * eiSymmGen.eigenvectors()).isApprox(
93 symmB * (eiSymmGen.eigenvectors() * eiSymmGen.eigenvalues().asDiagonal()), largerEps));
94
95 MatrixType sqrtSymmA = eiSymm.operatorSqrt();
96 VERIFY_IS_APPROX(symmA, sqrtSymmA*sqrtSymmA);
97 VERIFY_IS_APPROX(sqrtSymmA, symmA*eiSymm.operatorInverseSqrt());
98}
99
100template<typename MatrixType> void eigensolver(const MatrixType& m)
101{
102 /* this test covers the following files:
103 EigenSolver.h
104 */
105 int rows = m.rows();
106 int cols = m.cols();
107
108 typedef typename MatrixType::Scalar Scalar;
109 typedef typename NumTraits<Scalar>::Real RealScalar;
110 typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> VectorType;
111 typedef Matrix<RealScalar, MatrixType::RowsAtCompileTime, 1> RealVectorType;
112 typedef typename std::complex<typename NumTraits<typename MatrixType::Scalar>::Real> Complex;
113
114 // RealScalar largerEps = 10*test_precision<RealScalar>();
115
116 MatrixType a = MatrixType::Random(rows,cols);
117 MatrixType a1 = MatrixType::Random(rows,cols);
118 MatrixType symmA = a.adjoint() * a + a1.adjoint() * a1;
119
120 EigenSolver<MatrixType> ei0(symmA);
121 VERIFY_IS_APPROX(symmA * ei0.pseudoEigenvectors(), ei0.pseudoEigenvectors() * ei0.pseudoEigenvalueMatrix());
122 VERIFY_IS_APPROX((symmA.template cast<Complex>()) * (ei0.pseudoEigenvectors().template cast<Complex>()),
123 (ei0.pseudoEigenvectors().template cast<Complex>()) * (ei0.eigenvalues().asDiagonal()));
124
125 EigenSolver<MatrixType> ei1(a);
126 VERIFY_IS_APPROX(a * ei1.pseudoEigenvectors(), ei1.pseudoEigenvectors() * ei1.pseudoEigenvalueMatrix());
127 VERIFY_IS_APPROX(a.template cast<Complex>() * ei1.eigenvectors(),
128 ei1.eigenvectors() * ei1.eigenvalues().asDiagonal());
129
130}
131
132void test_eigen2_eigensolver()
133{
134 for(int i = 0; i < g_repeat; i++) {
135 // very important to test a 3x3 matrix since we provide a special path for it
136 CALL_SUBTEST_1( selfadjointeigensolver(Matrix3f()) );
137 CALL_SUBTEST_2( selfadjointeigensolver(Matrix4d()) );
138 CALL_SUBTEST_3( selfadjointeigensolver(MatrixXf(7,7)) );
139 CALL_SUBTEST_4( selfadjointeigensolver(MatrixXcd(5,5)) );
140 CALL_SUBTEST_5( selfadjointeigensolver(MatrixXd(19,19)) );
141
142 CALL_SUBTEST_6( eigensolver(Matrix4f()) );
143 CALL_SUBTEST_5( eigensolver(MatrixXd(17,17)) );
144 }
145}
146
Note: See TracBrowser for help on using the repository browser.