1 | // This file is part of Eigen, a lightweight C++ template library
|
---|
2 | // for linear algebra. Eigen itself is part of the KDE project.
|
---|
3 | //
|
---|
4 | // Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr>
|
---|
5 | //
|
---|
6 | // This Source Code Form is subject to the terms of the Mozilla
|
---|
7 | // Public License v. 2.0. If a copy of the MPL was not distributed
|
---|
8 | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
---|
9 |
|
---|
10 | #include "main.h"
|
---|
11 | #include <Eigen/QR>
|
---|
12 |
|
---|
13 | #ifdef HAS_GSL
|
---|
14 | #include "gsl_helper.h"
|
---|
15 | #endif
|
---|
16 |
|
---|
17 | template<typename MatrixType> void selfadjointeigensolver(const MatrixType& m)
|
---|
18 | {
|
---|
19 | /* this test covers the following files:
|
---|
20 | EigenSolver.h, SelfAdjointEigenSolver.h (and indirectly: Tridiagonalization.h)
|
---|
21 | */
|
---|
22 | int rows = m.rows();
|
---|
23 | int cols = m.cols();
|
---|
24 |
|
---|
25 | typedef typename MatrixType::Scalar Scalar;
|
---|
26 | typedef typename NumTraits<Scalar>::Real RealScalar;
|
---|
27 | typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> VectorType;
|
---|
28 | typedef Matrix<RealScalar, MatrixType::RowsAtCompileTime, 1> RealVectorType;
|
---|
29 | typedef typename std::complex<typename NumTraits<typename MatrixType::Scalar>::Real> Complex;
|
---|
30 |
|
---|
31 | RealScalar largerEps = 10*test_precision<RealScalar>();
|
---|
32 |
|
---|
33 | MatrixType a = MatrixType::Random(rows,cols);
|
---|
34 | MatrixType a1 = MatrixType::Random(rows,cols);
|
---|
35 | MatrixType symmA = a.adjoint() * a + a1.adjoint() * a1;
|
---|
36 |
|
---|
37 | MatrixType b = MatrixType::Random(rows,cols);
|
---|
38 | MatrixType b1 = MatrixType::Random(rows,cols);
|
---|
39 | MatrixType symmB = b.adjoint() * b + b1.adjoint() * b1;
|
---|
40 |
|
---|
41 | SelfAdjointEigenSolver<MatrixType> eiSymm(symmA);
|
---|
42 | // generalized eigen pb
|
---|
43 | SelfAdjointEigenSolver<MatrixType> eiSymmGen(symmA, symmB);
|
---|
44 |
|
---|
45 | #ifdef HAS_GSL
|
---|
46 | if (ei_is_same_type<RealScalar,double>::ret)
|
---|
47 | {
|
---|
48 | typedef GslTraits<Scalar> Gsl;
|
---|
49 | typename Gsl::Matrix gEvec=0, gSymmA=0, gSymmB=0;
|
---|
50 | typename GslTraits<RealScalar>::Vector gEval=0;
|
---|
51 | RealVectorType _eval;
|
---|
52 | MatrixType _evec;
|
---|
53 | convert<MatrixType>(symmA, gSymmA);
|
---|
54 | convert<MatrixType>(symmB, gSymmB);
|
---|
55 | convert<MatrixType>(symmA, gEvec);
|
---|
56 | gEval = GslTraits<RealScalar>::createVector(rows);
|
---|
57 |
|
---|
58 | Gsl::eigen_symm(gSymmA, gEval, gEvec);
|
---|
59 | convert(gEval, _eval);
|
---|
60 | convert(gEvec, _evec);
|
---|
61 |
|
---|
62 | // test gsl itself !
|
---|
63 | VERIFY((symmA * _evec).isApprox(_evec * _eval.asDiagonal(), largerEps));
|
---|
64 |
|
---|
65 | // compare with eigen
|
---|
66 | VERIFY_IS_APPROX(_eval, eiSymm.eigenvalues());
|
---|
67 | VERIFY_IS_APPROX(_evec.cwise().abs(), eiSymm.eigenvectors().cwise().abs());
|
---|
68 |
|
---|
69 | // generalized pb
|
---|
70 | Gsl::eigen_symm_gen(gSymmA, gSymmB, gEval, gEvec);
|
---|
71 | convert(gEval, _eval);
|
---|
72 | convert(gEvec, _evec);
|
---|
73 | // test GSL itself:
|
---|
74 | VERIFY((symmA * _evec).isApprox(symmB * (_evec * _eval.asDiagonal()), largerEps));
|
---|
75 |
|
---|
76 | // compare with eigen
|
---|
77 | MatrixType normalized_eivec = eiSymmGen.eigenvectors()*eiSymmGen.eigenvectors().colwise().norm().asDiagonal().inverse();
|
---|
78 | VERIFY_IS_APPROX(_eval, eiSymmGen.eigenvalues());
|
---|
79 | VERIFY_IS_APPROX(_evec.cwiseAbs(), normalized_eivec.cwiseAbs());
|
---|
80 |
|
---|
81 | Gsl::free(gSymmA);
|
---|
82 | Gsl::free(gSymmB);
|
---|
83 | GslTraits<RealScalar>::free(gEval);
|
---|
84 | Gsl::free(gEvec);
|
---|
85 | }
|
---|
86 | #endif
|
---|
87 |
|
---|
88 | VERIFY((symmA * eiSymm.eigenvectors()).isApprox(
|
---|
89 | eiSymm.eigenvectors() * eiSymm.eigenvalues().asDiagonal(), largerEps));
|
---|
90 |
|
---|
91 | // generalized eigen problem Ax = lBx
|
---|
92 | VERIFY((symmA * eiSymmGen.eigenvectors()).isApprox(
|
---|
93 | symmB * (eiSymmGen.eigenvectors() * eiSymmGen.eigenvalues().asDiagonal()), largerEps));
|
---|
94 |
|
---|
95 | MatrixType sqrtSymmA = eiSymm.operatorSqrt();
|
---|
96 | VERIFY_IS_APPROX(symmA, sqrtSymmA*sqrtSymmA);
|
---|
97 | VERIFY_IS_APPROX(sqrtSymmA, symmA*eiSymm.operatorInverseSqrt());
|
---|
98 | }
|
---|
99 |
|
---|
100 | template<typename MatrixType> void eigensolver(const MatrixType& m)
|
---|
101 | {
|
---|
102 | /* this test covers the following files:
|
---|
103 | EigenSolver.h
|
---|
104 | */
|
---|
105 | int rows = m.rows();
|
---|
106 | int cols = m.cols();
|
---|
107 |
|
---|
108 | typedef typename MatrixType::Scalar Scalar;
|
---|
109 | typedef typename NumTraits<Scalar>::Real RealScalar;
|
---|
110 | typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> VectorType;
|
---|
111 | typedef Matrix<RealScalar, MatrixType::RowsAtCompileTime, 1> RealVectorType;
|
---|
112 | typedef typename std::complex<typename NumTraits<typename MatrixType::Scalar>::Real> Complex;
|
---|
113 |
|
---|
114 | // RealScalar largerEps = 10*test_precision<RealScalar>();
|
---|
115 |
|
---|
116 | MatrixType a = MatrixType::Random(rows,cols);
|
---|
117 | MatrixType a1 = MatrixType::Random(rows,cols);
|
---|
118 | MatrixType symmA = a.adjoint() * a + a1.adjoint() * a1;
|
---|
119 |
|
---|
120 | EigenSolver<MatrixType> ei0(symmA);
|
---|
121 | VERIFY_IS_APPROX(symmA * ei0.pseudoEigenvectors(), ei0.pseudoEigenvectors() * ei0.pseudoEigenvalueMatrix());
|
---|
122 | VERIFY_IS_APPROX((symmA.template cast<Complex>()) * (ei0.pseudoEigenvectors().template cast<Complex>()),
|
---|
123 | (ei0.pseudoEigenvectors().template cast<Complex>()) * (ei0.eigenvalues().asDiagonal()));
|
---|
124 |
|
---|
125 | EigenSolver<MatrixType> ei1(a);
|
---|
126 | VERIFY_IS_APPROX(a * ei1.pseudoEigenvectors(), ei1.pseudoEigenvectors() * ei1.pseudoEigenvalueMatrix());
|
---|
127 | VERIFY_IS_APPROX(a.template cast<Complex>() * ei1.eigenvectors(),
|
---|
128 | ei1.eigenvectors() * ei1.eigenvalues().asDiagonal());
|
---|
129 |
|
---|
130 | }
|
---|
131 |
|
---|
132 | void test_eigen2_eigensolver()
|
---|
133 | {
|
---|
134 | for(int i = 0; i < g_repeat; i++) {
|
---|
135 | // very important to test a 3x3 matrix since we provide a special path for it
|
---|
136 | CALL_SUBTEST_1( selfadjointeigensolver(Matrix3f()) );
|
---|
137 | CALL_SUBTEST_2( selfadjointeigensolver(Matrix4d()) );
|
---|
138 | CALL_SUBTEST_3( selfadjointeigensolver(MatrixXf(7,7)) );
|
---|
139 | CALL_SUBTEST_4( selfadjointeigensolver(MatrixXcd(5,5)) );
|
---|
140 | CALL_SUBTEST_5( selfadjointeigensolver(MatrixXd(19,19)) );
|
---|
141 |
|
---|
142 | CALL_SUBTEST_6( eigensolver(Matrix4f()) );
|
---|
143 | CALL_SUBTEST_5( eigensolver(MatrixXd(17,17)) );
|
---|
144 | }
|
---|
145 | }
|
---|
146 |
|
---|