1 | // This file is part of Eigen, a lightweight C++ template library
|
---|
2 | // for linear algebra. Eigen itself is part of the KDE project.
|
---|
3 | //
|
---|
4 | // Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr>
|
---|
5 | //
|
---|
6 | // This Source Code Form is subject to the terms of the Mozilla
|
---|
7 | // Public License v. 2.0. If a copy of the MPL was not distributed
|
---|
8 | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
---|
9 |
|
---|
10 | #include "main.h"
|
---|
11 | #include <Eigen/Geometry>
|
---|
12 | #include <Eigen/LU>
|
---|
13 | #include <Eigen/SVD>
|
---|
14 |
|
---|
15 | template<typename Scalar> void geometry(void)
|
---|
16 | {
|
---|
17 | /* this test covers the following files:
|
---|
18 | Cross.h Quaternion.h, Transform.cpp
|
---|
19 | */
|
---|
20 |
|
---|
21 | typedef Matrix<Scalar,2,2> Matrix2;
|
---|
22 | typedef Matrix<Scalar,3,3> Matrix3;
|
---|
23 | typedef Matrix<Scalar,4,4> Matrix4;
|
---|
24 | typedef Matrix<Scalar,2,1> Vector2;
|
---|
25 | typedef Matrix<Scalar,3,1> Vector3;
|
---|
26 | typedef Matrix<Scalar,4,1> Vector4;
|
---|
27 | typedef Quaternion<Scalar> Quaternionx;
|
---|
28 | typedef AngleAxis<Scalar> AngleAxisx;
|
---|
29 | typedef Transform<Scalar,2> Transform2;
|
---|
30 | typedef Transform<Scalar,3> Transform3;
|
---|
31 | typedef Scaling<Scalar,2> Scaling2;
|
---|
32 | typedef Scaling<Scalar,3> Scaling3;
|
---|
33 | typedef Translation<Scalar,2> Translation2;
|
---|
34 | typedef Translation<Scalar,3> Translation3;
|
---|
35 |
|
---|
36 | Scalar largeEps = test_precision<Scalar>();
|
---|
37 | if (ei_is_same_type<Scalar,float>::ret)
|
---|
38 | largeEps = 1e-2f;
|
---|
39 |
|
---|
40 | Vector3 v0 = Vector3::Random(),
|
---|
41 | v1 = Vector3::Random(),
|
---|
42 | v2 = Vector3::Random();
|
---|
43 | Vector2 u0 = Vector2::Random();
|
---|
44 | Matrix3 matrot1;
|
---|
45 |
|
---|
46 | Scalar a = ei_random<Scalar>(-Scalar(M_PI), Scalar(M_PI));
|
---|
47 |
|
---|
48 | // cross product
|
---|
49 | VERIFY_IS_MUCH_SMALLER_THAN(v1.cross(v2).eigen2_dot(v1), Scalar(1));
|
---|
50 | Matrix3 m;
|
---|
51 | m << v0.normalized(),
|
---|
52 | (v0.cross(v1)).normalized(),
|
---|
53 | (v0.cross(v1).cross(v0)).normalized();
|
---|
54 | VERIFY(m.isUnitary());
|
---|
55 |
|
---|
56 | // Quaternion: Identity(), setIdentity();
|
---|
57 | Quaternionx q1, q2;
|
---|
58 | q2.setIdentity();
|
---|
59 | VERIFY_IS_APPROX(Quaternionx(Quaternionx::Identity()).coeffs(), q2.coeffs());
|
---|
60 | q1.coeffs().setRandom();
|
---|
61 | VERIFY_IS_APPROX(q1.coeffs(), (q1*q2).coeffs());
|
---|
62 |
|
---|
63 | // unitOrthogonal
|
---|
64 | VERIFY_IS_MUCH_SMALLER_THAN(u0.unitOrthogonal().eigen2_dot(u0), Scalar(1));
|
---|
65 | VERIFY_IS_MUCH_SMALLER_THAN(v0.unitOrthogonal().eigen2_dot(v0), Scalar(1));
|
---|
66 | VERIFY_IS_APPROX(u0.unitOrthogonal().norm(), Scalar(1));
|
---|
67 | VERIFY_IS_APPROX(v0.unitOrthogonal().norm(), Scalar(1));
|
---|
68 |
|
---|
69 |
|
---|
70 | VERIFY_IS_APPROX(v0, AngleAxisx(a, v0.normalized()) * v0);
|
---|
71 | VERIFY_IS_APPROX(-v0, AngleAxisx(Scalar(M_PI), v0.unitOrthogonal()) * v0);
|
---|
72 | VERIFY_IS_APPROX(ei_cos(a)*v0.squaredNorm(), v0.eigen2_dot(AngleAxisx(a, v0.unitOrthogonal()) * v0));
|
---|
73 | m = AngleAxisx(a, v0.normalized()).toRotationMatrix().adjoint();
|
---|
74 | VERIFY_IS_APPROX(Matrix3::Identity(), m * AngleAxisx(a, v0.normalized()));
|
---|
75 | VERIFY_IS_APPROX(Matrix3::Identity(), AngleAxisx(a, v0.normalized()) * m);
|
---|
76 |
|
---|
77 | q1 = AngleAxisx(a, v0.normalized());
|
---|
78 | q2 = AngleAxisx(a, v1.normalized());
|
---|
79 |
|
---|
80 | // angular distance
|
---|
81 | Scalar refangle = ei_abs(AngleAxisx(q1.inverse()*q2).angle());
|
---|
82 | if (refangle>Scalar(M_PI))
|
---|
83 | refangle = Scalar(2)*Scalar(M_PI) - refangle;
|
---|
84 |
|
---|
85 | if((q1.coeffs()-q2.coeffs()).norm() > 10*largeEps)
|
---|
86 | {
|
---|
87 | VERIFY(ei_isApprox(q1.angularDistance(q2), refangle, largeEps));
|
---|
88 | }
|
---|
89 |
|
---|
90 | // rotation matrix conversion
|
---|
91 | VERIFY_IS_APPROX(q1 * v2, q1.toRotationMatrix() * v2);
|
---|
92 | VERIFY_IS_APPROX(q1 * q2 * v2,
|
---|
93 | q1.toRotationMatrix() * q2.toRotationMatrix() * v2);
|
---|
94 |
|
---|
95 | VERIFY( (q2*q1).isApprox(q1*q2, largeEps) || !(q2 * q1 * v2).isApprox(
|
---|
96 | q1.toRotationMatrix() * q2.toRotationMatrix() * v2));
|
---|
97 |
|
---|
98 | q2 = q1.toRotationMatrix();
|
---|
99 | VERIFY_IS_APPROX(q1*v1,q2*v1);
|
---|
100 |
|
---|
101 | matrot1 = AngleAxisx(Scalar(0.1), Vector3::UnitX())
|
---|
102 | * AngleAxisx(Scalar(0.2), Vector3::UnitY())
|
---|
103 | * AngleAxisx(Scalar(0.3), Vector3::UnitZ());
|
---|
104 | VERIFY_IS_APPROX(matrot1 * v1,
|
---|
105 | AngleAxisx(Scalar(0.1), Vector3(1,0,0)).toRotationMatrix()
|
---|
106 | * (AngleAxisx(Scalar(0.2), Vector3(0,1,0)).toRotationMatrix()
|
---|
107 | * (AngleAxisx(Scalar(0.3), Vector3(0,0,1)).toRotationMatrix() * v1)));
|
---|
108 |
|
---|
109 | // angle-axis conversion
|
---|
110 | AngleAxisx aa = q1;
|
---|
111 | VERIFY_IS_APPROX(q1 * v1, Quaternionx(aa) * v1);
|
---|
112 | VERIFY_IS_NOT_APPROX(q1 * v1, Quaternionx(AngleAxisx(aa.angle()*2,aa.axis())) * v1);
|
---|
113 |
|
---|
114 | // from two vector creation
|
---|
115 | VERIFY_IS_APPROX(v2.normalized(),(q2.setFromTwoVectors(v1,v2)*v1).normalized());
|
---|
116 | VERIFY_IS_APPROX(v2.normalized(),(q2.setFromTwoVectors(v1,v2)*v1).normalized());
|
---|
117 |
|
---|
118 | // inverse and conjugate
|
---|
119 | VERIFY_IS_APPROX(q1 * (q1.inverse() * v1), v1);
|
---|
120 | VERIFY_IS_APPROX(q1 * (q1.conjugate() * v1), v1);
|
---|
121 |
|
---|
122 | // AngleAxis
|
---|
123 | VERIFY_IS_APPROX(AngleAxisx(a,v1.normalized()).toRotationMatrix(),
|
---|
124 | Quaternionx(AngleAxisx(a,v1.normalized())).toRotationMatrix());
|
---|
125 |
|
---|
126 | AngleAxisx aa1;
|
---|
127 | m = q1.toRotationMatrix();
|
---|
128 | aa1 = m;
|
---|
129 | VERIFY_IS_APPROX(AngleAxisx(m).toRotationMatrix(),
|
---|
130 | Quaternionx(m).toRotationMatrix());
|
---|
131 |
|
---|
132 | // Transform
|
---|
133 | // TODO complete the tests !
|
---|
134 | a = 0;
|
---|
135 | while (ei_abs(a)<Scalar(0.1))
|
---|
136 | a = ei_random<Scalar>(-Scalar(0.4)*Scalar(M_PI), Scalar(0.4)*Scalar(M_PI));
|
---|
137 | q1 = AngleAxisx(a, v0.normalized());
|
---|
138 | Transform3 t0, t1, t2;
|
---|
139 | // first test setIdentity() and Identity()
|
---|
140 | t0.setIdentity();
|
---|
141 | VERIFY_IS_APPROX(t0.matrix(), Transform3::MatrixType::Identity());
|
---|
142 | t0.matrix().setZero();
|
---|
143 | t0 = Transform3::Identity();
|
---|
144 | VERIFY_IS_APPROX(t0.matrix(), Transform3::MatrixType::Identity());
|
---|
145 |
|
---|
146 | t0.linear() = q1.toRotationMatrix();
|
---|
147 | t1.setIdentity();
|
---|
148 | t1.linear() = q1.toRotationMatrix();
|
---|
149 |
|
---|
150 | v0 << 50, 2, 1;//= ei_random_matrix<Vector3>().cwiseProduct(Vector3(10,2,0.5));
|
---|
151 | t0.scale(v0);
|
---|
152 | t1.prescale(v0);
|
---|
153 |
|
---|
154 | VERIFY_IS_APPROX( (t0 * Vector3(1,0,0)).norm(), v0.x());
|
---|
155 | //VERIFY(!ei_isApprox((t1 * Vector3(1,0,0)).norm(), v0.x()));
|
---|
156 |
|
---|
157 | t0.setIdentity();
|
---|
158 | t1.setIdentity();
|
---|
159 | v1 << 1, 2, 3;
|
---|
160 | t0.linear() = q1.toRotationMatrix();
|
---|
161 | t0.pretranslate(v0);
|
---|
162 | t0.scale(v1);
|
---|
163 | t1.linear() = q1.conjugate().toRotationMatrix();
|
---|
164 | t1.prescale(v1.cwise().inverse());
|
---|
165 | t1.translate(-v0);
|
---|
166 |
|
---|
167 | VERIFY((t0.matrix() * t1.matrix()).isIdentity(test_precision<Scalar>()));
|
---|
168 |
|
---|
169 | t1.fromPositionOrientationScale(v0, q1, v1);
|
---|
170 | VERIFY_IS_APPROX(t1.matrix(), t0.matrix());
|
---|
171 | VERIFY_IS_APPROX(t1*v1, t0*v1);
|
---|
172 |
|
---|
173 | t0.setIdentity(); t0.scale(v0).rotate(q1.toRotationMatrix());
|
---|
174 | t1.setIdentity(); t1.scale(v0).rotate(q1);
|
---|
175 | VERIFY_IS_APPROX(t0.matrix(), t1.matrix());
|
---|
176 |
|
---|
177 | t0.setIdentity(); t0.scale(v0).rotate(AngleAxisx(q1));
|
---|
178 | VERIFY_IS_APPROX(t0.matrix(), t1.matrix());
|
---|
179 |
|
---|
180 | VERIFY_IS_APPROX(t0.scale(a).matrix(), t1.scale(Vector3::Constant(a)).matrix());
|
---|
181 | VERIFY_IS_APPROX(t0.prescale(a).matrix(), t1.prescale(Vector3::Constant(a)).matrix());
|
---|
182 |
|
---|
183 | // More transform constructors, operator=, operator*=
|
---|
184 |
|
---|
185 | Matrix3 mat3 = Matrix3::Random();
|
---|
186 | Matrix4 mat4;
|
---|
187 | mat4 << mat3 , Vector3::Zero() , Vector4::Zero().transpose();
|
---|
188 | Transform3 tmat3(mat3), tmat4(mat4);
|
---|
189 | tmat4.matrix()(3,3) = Scalar(1);
|
---|
190 | VERIFY_IS_APPROX(tmat3.matrix(), tmat4.matrix());
|
---|
191 |
|
---|
192 | Scalar a3 = ei_random<Scalar>(-Scalar(M_PI), Scalar(M_PI));
|
---|
193 | Vector3 v3 = Vector3::Random().normalized();
|
---|
194 | AngleAxisx aa3(a3, v3);
|
---|
195 | Transform3 t3(aa3);
|
---|
196 | Transform3 t4;
|
---|
197 | t4 = aa3;
|
---|
198 | VERIFY_IS_APPROX(t3.matrix(), t4.matrix());
|
---|
199 | t4.rotate(AngleAxisx(-a3,v3));
|
---|
200 | VERIFY_IS_APPROX(t4.matrix(), Matrix4::Identity());
|
---|
201 | t4 *= aa3;
|
---|
202 | VERIFY_IS_APPROX(t3.matrix(), t4.matrix());
|
---|
203 |
|
---|
204 | v3 = Vector3::Random();
|
---|
205 | Translation3 tv3(v3);
|
---|
206 | Transform3 t5(tv3);
|
---|
207 | t4 = tv3;
|
---|
208 | VERIFY_IS_APPROX(t5.matrix(), t4.matrix());
|
---|
209 | t4.translate(-v3);
|
---|
210 | VERIFY_IS_APPROX(t4.matrix(), Matrix4::Identity());
|
---|
211 | t4 *= tv3;
|
---|
212 | VERIFY_IS_APPROX(t5.matrix(), t4.matrix());
|
---|
213 |
|
---|
214 | Scaling3 sv3(v3);
|
---|
215 | Transform3 t6(sv3);
|
---|
216 | t4 = sv3;
|
---|
217 | VERIFY_IS_APPROX(t6.matrix(), t4.matrix());
|
---|
218 | t4.scale(v3.cwise().inverse());
|
---|
219 | VERIFY_IS_APPROX(t4.matrix(), Matrix4::Identity());
|
---|
220 | t4 *= sv3;
|
---|
221 | VERIFY_IS_APPROX(t6.matrix(), t4.matrix());
|
---|
222 |
|
---|
223 | // matrix * transform
|
---|
224 | VERIFY_IS_APPROX(Transform3(t3.matrix()*t4).matrix(), Transform3(t3*t4).matrix());
|
---|
225 |
|
---|
226 | // chained Transform product
|
---|
227 | VERIFY_IS_APPROX(((t3*t4)*t5).matrix(), (t3*(t4*t5)).matrix());
|
---|
228 |
|
---|
229 | // check that Transform product doesn't have aliasing problems
|
---|
230 | t5 = t4;
|
---|
231 | t5 = t5*t5;
|
---|
232 | VERIFY_IS_APPROX(t5, t4*t4);
|
---|
233 |
|
---|
234 | // 2D transformation
|
---|
235 | Transform2 t20, t21;
|
---|
236 | Vector2 v20 = Vector2::Random();
|
---|
237 | Vector2 v21 = Vector2::Random();
|
---|
238 | for (int k=0; k<2; ++k)
|
---|
239 | if (ei_abs(v21[k])<Scalar(1e-3)) v21[k] = Scalar(1e-3);
|
---|
240 | t21.setIdentity();
|
---|
241 | t21.linear() = Rotation2D<Scalar>(a).toRotationMatrix();
|
---|
242 | VERIFY_IS_APPROX(t20.fromPositionOrientationScale(v20,a,v21).matrix(),
|
---|
243 | t21.pretranslate(v20).scale(v21).matrix());
|
---|
244 |
|
---|
245 | t21.setIdentity();
|
---|
246 | t21.linear() = Rotation2D<Scalar>(-a).toRotationMatrix();
|
---|
247 | VERIFY( (t20.fromPositionOrientationScale(v20,a,v21)
|
---|
248 | * (t21.prescale(v21.cwise().inverse()).translate(-v20))).matrix().isIdentity(test_precision<Scalar>()) );
|
---|
249 |
|
---|
250 | // Transform - new API
|
---|
251 | // 3D
|
---|
252 | t0.setIdentity();
|
---|
253 | t0.rotate(q1).scale(v0).translate(v0);
|
---|
254 | // mat * scaling and mat * translation
|
---|
255 | t1 = (Matrix3(q1) * Scaling3(v0)) * Translation3(v0);
|
---|
256 | VERIFY_IS_APPROX(t0.matrix(), t1.matrix());
|
---|
257 | // mat * transformation and scaling * translation
|
---|
258 | t1 = Matrix3(q1) * (Scaling3(v0) * Translation3(v0));
|
---|
259 | VERIFY_IS_APPROX(t0.matrix(), t1.matrix());
|
---|
260 |
|
---|
261 | t0.setIdentity();
|
---|
262 | t0.prerotate(q1).prescale(v0).pretranslate(v0);
|
---|
263 | // translation * scaling and transformation * mat
|
---|
264 | t1 = (Translation3(v0) * Scaling3(v0)) * Matrix3(q1);
|
---|
265 | VERIFY_IS_APPROX(t0.matrix(), t1.matrix());
|
---|
266 | // scaling * mat and translation * mat
|
---|
267 | t1 = Translation3(v0) * (Scaling3(v0) * Matrix3(q1));
|
---|
268 | VERIFY_IS_APPROX(t0.matrix(), t1.matrix());
|
---|
269 |
|
---|
270 | t0.setIdentity();
|
---|
271 | t0.scale(v0).translate(v0).rotate(q1);
|
---|
272 | // translation * mat and scaling * transformation
|
---|
273 | t1 = Scaling3(v0) * (Translation3(v0) * Matrix3(q1));
|
---|
274 | VERIFY_IS_APPROX(t0.matrix(), t1.matrix());
|
---|
275 | // transformation * scaling
|
---|
276 | t0.scale(v0);
|
---|
277 | t1 = t1 * Scaling3(v0);
|
---|
278 | VERIFY_IS_APPROX(t0.matrix(), t1.matrix());
|
---|
279 | // transformation * translation
|
---|
280 | t0.translate(v0);
|
---|
281 | t1 = t1 * Translation3(v0);
|
---|
282 | VERIFY_IS_APPROX(t0.matrix(), t1.matrix());
|
---|
283 | // translation * transformation
|
---|
284 | t0.pretranslate(v0);
|
---|
285 | t1 = Translation3(v0) * t1;
|
---|
286 | VERIFY_IS_APPROX(t0.matrix(), t1.matrix());
|
---|
287 |
|
---|
288 | // transform * quaternion
|
---|
289 | t0.rotate(q1);
|
---|
290 | t1 = t1 * q1;
|
---|
291 | VERIFY_IS_APPROX(t0.matrix(), t1.matrix());
|
---|
292 |
|
---|
293 | // translation * quaternion
|
---|
294 | t0.translate(v1).rotate(q1);
|
---|
295 | t1 = t1 * (Translation3(v1) * q1);
|
---|
296 | VERIFY_IS_APPROX(t0.matrix(), t1.matrix());
|
---|
297 |
|
---|
298 | // scaling * quaternion
|
---|
299 | t0.scale(v1).rotate(q1);
|
---|
300 | t1 = t1 * (Scaling3(v1) * q1);
|
---|
301 | VERIFY_IS_APPROX(t0.matrix(), t1.matrix());
|
---|
302 |
|
---|
303 | // quaternion * transform
|
---|
304 | t0.prerotate(q1);
|
---|
305 | t1 = q1 * t1;
|
---|
306 | VERIFY_IS_APPROX(t0.matrix(), t1.matrix());
|
---|
307 |
|
---|
308 | // quaternion * translation
|
---|
309 | t0.rotate(q1).translate(v1);
|
---|
310 | t1 = t1 * (q1 * Translation3(v1));
|
---|
311 | VERIFY_IS_APPROX(t0.matrix(), t1.matrix());
|
---|
312 |
|
---|
313 | // quaternion * scaling
|
---|
314 | t0.rotate(q1).scale(v1);
|
---|
315 | t1 = t1 * (q1 * Scaling3(v1));
|
---|
316 | VERIFY_IS_APPROX(t0.matrix(), t1.matrix());
|
---|
317 |
|
---|
318 | // translation * vector
|
---|
319 | t0.setIdentity();
|
---|
320 | t0.translate(v0);
|
---|
321 | VERIFY_IS_APPROX(t0 * v1, Translation3(v0) * v1);
|
---|
322 |
|
---|
323 | // scaling * vector
|
---|
324 | t0.setIdentity();
|
---|
325 | t0.scale(v0);
|
---|
326 | VERIFY_IS_APPROX(t0 * v1, Scaling3(v0) * v1);
|
---|
327 |
|
---|
328 | // test transform inversion
|
---|
329 | t0.setIdentity();
|
---|
330 | t0.translate(v0);
|
---|
331 | t0.linear().setRandom();
|
---|
332 | VERIFY_IS_APPROX(t0.inverse(Affine), t0.matrix().inverse());
|
---|
333 | t0.setIdentity();
|
---|
334 | t0.translate(v0).rotate(q1);
|
---|
335 | VERIFY_IS_APPROX(t0.inverse(Isometry), t0.matrix().inverse());
|
---|
336 |
|
---|
337 | // test extract rotation and scaling
|
---|
338 | t0.setIdentity();
|
---|
339 | t0.translate(v0).rotate(q1).scale(v1);
|
---|
340 | VERIFY_IS_APPROX(t0.rotation() * v1, Matrix3(q1) * v1);
|
---|
341 |
|
---|
342 | Matrix3 mat_rotation, mat_scaling;
|
---|
343 | t0.setIdentity();
|
---|
344 | t0.translate(v0).rotate(q1).scale(v1);
|
---|
345 | t0.computeRotationScaling(&mat_rotation, &mat_scaling);
|
---|
346 | VERIFY_IS_APPROX(t0.linear(), mat_rotation * mat_scaling);
|
---|
347 | VERIFY_IS_APPROX(mat_rotation*mat_rotation.adjoint(), Matrix3::Identity());
|
---|
348 | VERIFY_IS_APPROX(mat_rotation.determinant(), Scalar(1));
|
---|
349 | t0.computeScalingRotation(&mat_scaling, &mat_rotation);
|
---|
350 | VERIFY_IS_APPROX(t0.linear(), mat_scaling * mat_rotation);
|
---|
351 | VERIFY_IS_APPROX(mat_rotation*mat_rotation.adjoint(), Matrix3::Identity());
|
---|
352 | VERIFY_IS_APPROX(mat_rotation.determinant(), Scalar(1));
|
---|
353 |
|
---|
354 | // test casting
|
---|
355 | Transform<float,3> t1f = t1.template cast<float>();
|
---|
356 | VERIFY_IS_APPROX(t1f.template cast<Scalar>(),t1);
|
---|
357 | Transform<double,3> t1d = t1.template cast<double>();
|
---|
358 | VERIFY_IS_APPROX(t1d.template cast<Scalar>(),t1);
|
---|
359 |
|
---|
360 | Translation3 tr1(v0);
|
---|
361 | Translation<float,3> tr1f = tr1.template cast<float>();
|
---|
362 | VERIFY_IS_APPROX(tr1f.template cast<Scalar>(),tr1);
|
---|
363 | Translation<double,3> tr1d = tr1.template cast<double>();
|
---|
364 | VERIFY_IS_APPROX(tr1d.template cast<Scalar>(),tr1);
|
---|
365 |
|
---|
366 | Scaling3 sc1(v0);
|
---|
367 | Scaling<float,3> sc1f = sc1.template cast<float>();
|
---|
368 | VERIFY_IS_APPROX(sc1f.template cast<Scalar>(),sc1);
|
---|
369 | Scaling<double,3> sc1d = sc1.template cast<double>();
|
---|
370 | VERIFY_IS_APPROX(sc1d.template cast<Scalar>(),sc1);
|
---|
371 |
|
---|
372 | Quaternion<float> q1f = q1.template cast<float>();
|
---|
373 | VERIFY_IS_APPROX(q1f.template cast<Scalar>(),q1);
|
---|
374 | Quaternion<double> q1d = q1.template cast<double>();
|
---|
375 | VERIFY_IS_APPROX(q1d.template cast<Scalar>(),q1);
|
---|
376 |
|
---|
377 | AngleAxis<float> aa1f = aa1.template cast<float>();
|
---|
378 | VERIFY_IS_APPROX(aa1f.template cast<Scalar>(),aa1);
|
---|
379 | AngleAxis<double> aa1d = aa1.template cast<double>();
|
---|
380 | VERIFY_IS_APPROX(aa1d.template cast<Scalar>(),aa1);
|
---|
381 |
|
---|
382 | Rotation2D<Scalar> r2d1(ei_random<Scalar>());
|
---|
383 | Rotation2D<float> r2d1f = r2d1.template cast<float>();
|
---|
384 | VERIFY_IS_APPROX(r2d1f.template cast<Scalar>(),r2d1);
|
---|
385 | Rotation2D<double> r2d1d = r2d1.template cast<double>();
|
---|
386 | VERIFY_IS_APPROX(r2d1d.template cast<Scalar>(),r2d1);
|
---|
387 |
|
---|
388 | m = q1;
|
---|
389 | // m.col(1) = Vector3(0,ei_random<Scalar>(),ei_random<Scalar>()).normalized();
|
---|
390 | // m.col(0) = Vector3(-1,0,0).normalized();
|
---|
391 | // m.col(2) = m.col(0).cross(m.col(1));
|
---|
392 | #define VERIFY_EULER(I,J,K, X,Y,Z) { \
|
---|
393 | Vector3 ea = m.eulerAngles(I,J,K); \
|
---|
394 | Matrix3 m1 = Matrix3(AngleAxisx(ea[0], Vector3::Unit##X()) * AngleAxisx(ea[1], Vector3::Unit##Y()) * AngleAxisx(ea[2], Vector3::Unit##Z())); \
|
---|
395 | VERIFY_IS_APPROX(m, m1); \
|
---|
396 | VERIFY_IS_APPROX(m, Matrix3(AngleAxisx(ea[0], Vector3::Unit##X()) * AngleAxisx(ea[1], Vector3::Unit##Y()) * AngleAxisx(ea[2], Vector3::Unit##Z()))); \
|
---|
397 | }
|
---|
398 | VERIFY_EULER(0,1,2, X,Y,Z);
|
---|
399 | VERIFY_EULER(0,1,0, X,Y,X);
|
---|
400 | VERIFY_EULER(0,2,1, X,Z,Y);
|
---|
401 | VERIFY_EULER(0,2,0, X,Z,X);
|
---|
402 |
|
---|
403 | VERIFY_EULER(1,2,0, Y,Z,X);
|
---|
404 | VERIFY_EULER(1,2,1, Y,Z,Y);
|
---|
405 | VERIFY_EULER(1,0,2, Y,X,Z);
|
---|
406 | VERIFY_EULER(1,0,1, Y,X,Y);
|
---|
407 |
|
---|
408 | VERIFY_EULER(2,0,1, Z,X,Y);
|
---|
409 | VERIFY_EULER(2,0,2, Z,X,Z);
|
---|
410 | VERIFY_EULER(2,1,0, Z,Y,X);
|
---|
411 | VERIFY_EULER(2,1,2, Z,Y,Z);
|
---|
412 |
|
---|
413 | // colwise/rowwise cross product
|
---|
414 | mat3.setRandom();
|
---|
415 | Vector3 vec3 = Vector3::Random();
|
---|
416 | Matrix3 mcross;
|
---|
417 | int i = ei_random<int>(0,2);
|
---|
418 | mcross = mat3.colwise().cross(vec3);
|
---|
419 | VERIFY_IS_APPROX(mcross.col(i), mat3.col(i).cross(vec3));
|
---|
420 | mcross = mat3.rowwise().cross(vec3);
|
---|
421 | VERIFY_IS_APPROX(mcross.row(i), mat3.row(i).cross(vec3));
|
---|
422 |
|
---|
423 |
|
---|
424 | }
|
---|
425 |
|
---|
426 | void test_eigen2_geometry()
|
---|
427 | {
|
---|
428 | for(int i = 0; i < g_repeat; i++) {
|
---|
429 | CALL_SUBTEST_1( geometry<float>() );
|
---|
430 | CALL_SUBTEST_2( geometry<double>() );
|
---|
431 | }
|
---|
432 | }
|
---|