1 | // This file is part of Eigen, a lightweight C++ template library
|
---|
2 | // for linear algebra. Eigen itself is part of the KDE project.
|
---|
3 | //
|
---|
4 | // Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr>
|
---|
5 | // Copyright (C) 2008 Benoit Jacob <jacob.benoit.1@gmail.com>
|
---|
6 | //
|
---|
7 | // This Source Code Form is subject to the terms of the Mozilla
|
---|
8 | // Public License v. 2.0. If a copy of the MPL was not distributed
|
---|
9 | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
---|
10 |
|
---|
11 | #include "main.h"
|
---|
12 | #include <Eigen/LU>
|
---|
13 |
|
---|
14 | template<typename MatrixType> void inverse(const MatrixType& m)
|
---|
15 | {
|
---|
16 | /* this test covers the following files:
|
---|
17 | Inverse.h
|
---|
18 | */
|
---|
19 | int rows = m.rows();
|
---|
20 | int cols = m.cols();
|
---|
21 |
|
---|
22 | typedef typename MatrixType::Scalar Scalar;
|
---|
23 | typedef typename NumTraits<Scalar>::Real RealScalar;
|
---|
24 | typedef Matrix<Scalar, MatrixType::ColsAtCompileTime, 1> VectorType;
|
---|
25 |
|
---|
26 | MatrixType m1 = MatrixType::Random(rows, cols),
|
---|
27 | m2(rows, cols),
|
---|
28 | identity = MatrixType::Identity(rows, rows);
|
---|
29 |
|
---|
30 | while(ei_abs(m1.determinant()) < RealScalar(0.1) && rows <= 8)
|
---|
31 | {
|
---|
32 | m1 = MatrixType::Random(rows, cols);
|
---|
33 | }
|
---|
34 |
|
---|
35 | m2 = m1.inverse();
|
---|
36 | VERIFY_IS_APPROX(m1, m2.inverse() );
|
---|
37 |
|
---|
38 | m1.computeInverse(&m2);
|
---|
39 | VERIFY_IS_APPROX(m1, m2.inverse() );
|
---|
40 |
|
---|
41 | VERIFY_IS_APPROX((Scalar(2)*m2).inverse(), m2.inverse()*Scalar(0.5));
|
---|
42 |
|
---|
43 | VERIFY_IS_APPROX(identity, m1.inverse() * m1 );
|
---|
44 | VERIFY_IS_APPROX(identity, m1 * m1.inverse() );
|
---|
45 |
|
---|
46 | VERIFY_IS_APPROX(m1, m1.inverse().inverse() );
|
---|
47 |
|
---|
48 | // since for the general case we implement separately row-major and col-major, test that
|
---|
49 | VERIFY_IS_APPROX(m1.transpose().inverse(), m1.inverse().transpose());
|
---|
50 | }
|
---|
51 |
|
---|
52 | void test_eigen2_inverse()
|
---|
53 | {
|
---|
54 | for(int i = 0; i < g_repeat; i++) {
|
---|
55 | CALL_SUBTEST_1( inverse(Matrix<double,1,1>()) );
|
---|
56 | CALL_SUBTEST_2( inverse(Matrix2d()) );
|
---|
57 | CALL_SUBTEST_3( inverse(Matrix3f()) );
|
---|
58 | CALL_SUBTEST_4( inverse(Matrix4f()) );
|
---|
59 | CALL_SUBTEST_5( inverse(MatrixXf(8,8)) );
|
---|
60 | CALL_SUBTEST_6( inverse(MatrixXcd(7,7)) );
|
---|
61 | }
|
---|
62 | }
|
---|