1 | // This file is part of Eigen, a lightweight C++ template library
|
---|
2 | // for linear algebra. Eigen itself is part of the KDE project.
|
---|
3 | //
|
---|
4 | // Copyright (C) 2008 Benoit Jacob <jacob.benoit.1@gmail.com>
|
---|
5 | //
|
---|
6 | // This Source Code Form is subject to the terms of the Mozilla
|
---|
7 | // Public License v. 2.0. If a copy of the MPL was not distributed
|
---|
8 | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
---|
9 |
|
---|
10 | #include "main.h"
|
---|
11 | #include <Eigen/LU>
|
---|
12 |
|
---|
13 | template<typename Derived>
|
---|
14 | void doSomeRankPreservingOperations(Eigen::MatrixBase<Derived>& m)
|
---|
15 | {
|
---|
16 | typedef typename Derived::RealScalar RealScalar;
|
---|
17 | for(int a = 0; a < 3*(m.rows()+m.cols()); a++)
|
---|
18 | {
|
---|
19 | RealScalar d = Eigen::ei_random<RealScalar>(-1,1);
|
---|
20 | int i = Eigen::ei_random<int>(0,m.rows()-1); // i is a random row number
|
---|
21 | int j;
|
---|
22 | do {
|
---|
23 | j = Eigen::ei_random<int>(0,m.rows()-1);
|
---|
24 | } while (i==j); // j is another one (must be different)
|
---|
25 | m.row(i) += d * m.row(j);
|
---|
26 |
|
---|
27 | i = Eigen::ei_random<int>(0,m.cols()-1); // i is a random column number
|
---|
28 | do {
|
---|
29 | j = Eigen::ei_random<int>(0,m.cols()-1);
|
---|
30 | } while (i==j); // j is another one (must be different)
|
---|
31 | m.col(i) += d * m.col(j);
|
---|
32 | }
|
---|
33 | }
|
---|
34 |
|
---|
35 | template<typename MatrixType> void lu_non_invertible()
|
---|
36 | {
|
---|
37 | /* this test covers the following files:
|
---|
38 | LU.h
|
---|
39 | */
|
---|
40 | // NOTE there seems to be a problem with too small sizes -- could easily lie in the doSomeRankPreservingOperations function
|
---|
41 | int rows = ei_random<int>(20,200), cols = ei_random<int>(20,200), cols2 = ei_random<int>(20,200);
|
---|
42 | int rank = ei_random<int>(1, std::min(rows, cols)-1);
|
---|
43 |
|
---|
44 | MatrixType m1(rows, cols), m2(cols, cols2), m3(rows, cols2), k(1,1);
|
---|
45 | m1 = MatrixType::Random(rows,cols);
|
---|
46 | if(rows <= cols)
|
---|
47 | for(int i = rank; i < rows; i++) m1.row(i).setZero();
|
---|
48 | else
|
---|
49 | for(int i = rank; i < cols; i++) m1.col(i).setZero();
|
---|
50 | doSomeRankPreservingOperations(m1);
|
---|
51 |
|
---|
52 | LU<MatrixType> lu(m1);
|
---|
53 | typename LU<MatrixType>::KernelResultType m1kernel = lu.kernel();
|
---|
54 | typename LU<MatrixType>::ImageResultType m1image = lu.image();
|
---|
55 |
|
---|
56 | VERIFY(rank == lu.rank());
|
---|
57 | VERIFY(cols - lu.rank() == lu.dimensionOfKernel());
|
---|
58 | VERIFY(!lu.isInjective());
|
---|
59 | VERIFY(!lu.isInvertible());
|
---|
60 | VERIFY(lu.isSurjective() == (lu.rank() == rows));
|
---|
61 | VERIFY((m1 * m1kernel).isMuchSmallerThan(m1));
|
---|
62 | VERIFY(m1image.lu().rank() == rank);
|
---|
63 | MatrixType sidebyside(m1.rows(), m1.cols() + m1image.cols());
|
---|
64 | sidebyside << m1, m1image;
|
---|
65 | VERIFY(sidebyside.lu().rank() == rank);
|
---|
66 | m2 = MatrixType::Random(cols,cols2);
|
---|
67 | m3 = m1*m2;
|
---|
68 | m2 = MatrixType::Random(cols,cols2);
|
---|
69 | lu.solve(m3, &m2);
|
---|
70 | VERIFY_IS_APPROX(m3, m1*m2);
|
---|
71 | /* solve now always returns true
|
---|
72 | m3 = MatrixType::Random(rows,cols2);
|
---|
73 | VERIFY(!lu.solve(m3, &m2));
|
---|
74 | */
|
---|
75 | }
|
---|
76 |
|
---|
77 | template<typename MatrixType> void lu_invertible()
|
---|
78 | {
|
---|
79 | /* this test covers the following files:
|
---|
80 | LU.h
|
---|
81 | */
|
---|
82 | typedef typename NumTraits<typename MatrixType::Scalar>::Real RealScalar;
|
---|
83 | int size = ei_random<int>(10,200);
|
---|
84 |
|
---|
85 | MatrixType m1(size, size), m2(size, size), m3(size, size);
|
---|
86 | m1 = MatrixType::Random(size,size);
|
---|
87 |
|
---|
88 | if (ei_is_same_type<RealScalar,float>::ret)
|
---|
89 | {
|
---|
90 | // let's build a matrix more stable to inverse
|
---|
91 | MatrixType a = MatrixType::Random(size,size*2);
|
---|
92 | m1 += a * a.adjoint();
|
---|
93 | }
|
---|
94 |
|
---|
95 | LU<MatrixType> lu(m1);
|
---|
96 | VERIFY(0 == lu.dimensionOfKernel());
|
---|
97 | VERIFY(size == lu.rank());
|
---|
98 | VERIFY(lu.isInjective());
|
---|
99 | VERIFY(lu.isSurjective());
|
---|
100 | VERIFY(lu.isInvertible());
|
---|
101 | VERIFY(lu.image().lu().isInvertible());
|
---|
102 | m3 = MatrixType::Random(size,size);
|
---|
103 | lu.solve(m3, &m2);
|
---|
104 | VERIFY_IS_APPROX(m3, m1*m2);
|
---|
105 | VERIFY_IS_APPROX(m2, lu.inverse()*m3);
|
---|
106 | m3 = MatrixType::Random(size,size);
|
---|
107 | VERIFY(lu.solve(m3, &m2));
|
---|
108 | }
|
---|
109 |
|
---|
110 | void test_eigen2_lu()
|
---|
111 | {
|
---|
112 | for(int i = 0; i < g_repeat; i++) {
|
---|
113 | CALL_SUBTEST_1( lu_non_invertible<MatrixXf>() );
|
---|
114 | CALL_SUBTEST_2( lu_non_invertible<MatrixXd>() );
|
---|
115 | CALL_SUBTEST_3( lu_non_invertible<MatrixXcf>() );
|
---|
116 | CALL_SUBTEST_4( lu_non_invertible<MatrixXcd>() );
|
---|
117 | CALL_SUBTEST_1( lu_invertible<MatrixXf>() );
|
---|
118 | CALL_SUBTEST_2( lu_invertible<MatrixXd>() );
|
---|
119 | CALL_SUBTEST_3( lu_invertible<MatrixXcf>() );
|
---|
120 | CALL_SUBTEST_4( lu_invertible<MatrixXcd>() );
|
---|
121 | }
|
---|
122 | }
|
---|