1 | // This file is part of Eigen, a lightweight C++ template library
|
---|
2 | // for linear algebra. Eigen itself is part of the KDE project.
|
---|
3 | //
|
---|
4 | // Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr>
|
---|
5 | //
|
---|
6 | // This Source Code Form is subject to the terms of the Mozilla
|
---|
7 | // Public License v. 2.0. If a copy of the MPL was not distributed
|
---|
8 | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
---|
9 |
|
---|
10 | #include "main.h"
|
---|
11 | #include <Eigen/QR>
|
---|
12 |
|
---|
13 | template<typename MatrixType> void qr(const MatrixType& m)
|
---|
14 | {
|
---|
15 | /* this test covers the following files:
|
---|
16 | QR.h
|
---|
17 | */
|
---|
18 | int rows = m.rows();
|
---|
19 | int cols = m.cols();
|
---|
20 |
|
---|
21 | typedef typename MatrixType::Scalar Scalar;
|
---|
22 | typedef Matrix<Scalar, MatrixType::ColsAtCompileTime, MatrixType::ColsAtCompileTime> SquareMatrixType;
|
---|
23 | typedef Matrix<Scalar, MatrixType::ColsAtCompileTime, 1> VectorType;
|
---|
24 |
|
---|
25 | MatrixType a = MatrixType::Random(rows,cols);
|
---|
26 | QR<MatrixType> qrOfA(a);
|
---|
27 | VERIFY_IS_APPROX(a, qrOfA.matrixQ() * qrOfA.matrixR());
|
---|
28 | VERIFY_IS_NOT_APPROX(a+MatrixType::Identity(rows, cols), qrOfA.matrixQ() * qrOfA.matrixR());
|
---|
29 |
|
---|
30 | #if 0 // eigenvalues module not yet ready
|
---|
31 | SquareMatrixType b = a.adjoint() * a;
|
---|
32 |
|
---|
33 | // check tridiagonalization
|
---|
34 | Tridiagonalization<SquareMatrixType> tridiag(b);
|
---|
35 | VERIFY_IS_APPROX(b, tridiag.matrixQ() * tridiag.matrixT() * tridiag.matrixQ().adjoint());
|
---|
36 |
|
---|
37 | // check hessenberg decomposition
|
---|
38 | HessenbergDecomposition<SquareMatrixType> hess(b);
|
---|
39 | VERIFY_IS_APPROX(b, hess.matrixQ() * hess.matrixH() * hess.matrixQ().adjoint());
|
---|
40 | VERIFY_IS_APPROX(tridiag.matrixT(), hess.matrixH());
|
---|
41 | b = SquareMatrixType::Random(cols,cols);
|
---|
42 | hess.compute(b);
|
---|
43 | VERIFY_IS_APPROX(b, hess.matrixQ() * hess.matrixH() * hess.matrixQ().adjoint());
|
---|
44 | #endif
|
---|
45 | }
|
---|
46 |
|
---|
47 | void test_eigen2_qr()
|
---|
48 | {
|
---|
49 | for(int i = 0; i < 1; i++) {
|
---|
50 | CALL_SUBTEST_1( qr(Matrix2f()) );
|
---|
51 | CALL_SUBTEST_2( qr(Matrix4d()) );
|
---|
52 | CALL_SUBTEST_3( qr(MatrixXf(12,8)) );
|
---|
53 | CALL_SUBTEST_4( qr(MatrixXcd(5,5)) );
|
---|
54 | CALL_SUBTEST_4( qr(MatrixXcd(7,3)) );
|
---|
55 | }
|
---|
56 |
|
---|
57 | #ifdef EIGEN_TEST_PART_5
|
---|
58 | // small isFullRank test
|
---|
59 | {
|
---|
60 | Matrix3d mat;
|
---|
61 | mat << 1, 45, 1, 2, 2, 2, 1, 2, 3;
|
---|
62 | VERIFY(mat.qr().isFullRank());
|
---|
63 | mat << 1, 1, 1, 2, 2, 2, 1, 2, 3;
|
---|
64 | //always returns true in eigen2support
|
---|
65 | //VERIFY(!mat.qr().isFullRank());
|
---|
66 | }
|
---|
67 |
|
---|
68 | #endif
|
---|
69 | }
|
---|