1 | // This file is part of Eigen, a lightweight C++ template library
|
---|
2 | // for linear algebra. Eigen itself is part of the KDE project.
|
---|
3 | //
|
---|
4 | // Copyright (C) 2008 Benoit Jacob <jacob.benoit.1@gmail.com>
|
---|
5 | //
|
---|
6 | // This Source Code Form is subject to the terms of the Mozilla
|
---|
7 | // Public License v. 2.0. If a copy of the MPL was not distributed
|
---|
8 | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
---|
9 |
|
---|
10 | #include "main.h"
|
---|
11 | #include <Eigen/LeastSquares>
|
---|
12 |
|
---|
13 | template<typename VectorType,
|
---|
14 | typename HyperplaneType>
|
---|
15 | void makeNoisyCohyperplanarPoints(int numPoints,
|
---|
16 | VectorType **points,
|
---|
17 | HyperplaneType *hyperplane,
|
---|
18 | typename VectorType::Scalar noiseAmplitude)
|
---|
19 | {
|
---|
20 | typedef typename VectorType::Scalar Scalar;
|
---|
21 | const int size = points[0]->size();
|
---|
22 | // pick a random hyperplane, store the coefficients of its equation
|
---|
23 | hyperplane->coeffs().resize(size + 1);
|
---|
24 | for(int j = 0; j < size + 1; j++)
|
---|
25 | {
|
---|
26 | do {
|
---|
27 | hyperplane->coeffs().coeffRef(j) = ei_random<Scalar>();
|
---|
28 | } while(ei_abs(hyperplane->coeffs().coeff(j)) < 0.5);
|
---|
29 | }
|
---|
30 |
|
---|
31 | // now pick numPoints random points on this hyperplane
|
---|
32 | for(int i = 0; i < numPoints; i++)
|
---|
33 | {
|
---|
34 | VectorType& cur_point = *(points[i]);
|
---|
35 | do
|
---|
36 | {
|
---|
37 | cur_point = VectorType::Random(size)/*.normalized()*/;
|
---|
38 | // project cur_point onto the hyperplane
|
---|
39 | Scalar x = - (hyperplane->coeffs().start(size).cwise()*cur_point).sum();
|
---|
40 | cur_point *= hyperplane->coeffs().coeff(size) / x;
|
---|
41 | } while( cur_point.norm() < 0.5
|
---|
42 | || cur_point.norm() > 2.0 );
|
---|
43 | }
|
---|
44 |
|
---|
45 | // add some noise to these points
|
---|
46 | for(int i = 0; i < numPoints; i++ )
|
---|
47 | *(points[i]) += noiseAmplitude * VectorType::Random(size);
|
---|
48 | }
|
---|
49 |
|
---|
50 | template<typename VectorType>
|
---|
51 | void check_linearRegression(int numPoints,
|
---|
52 | VectorType **points,
|
---|
53 | const VectorType& original,
|
---|
54 | typename VectorType::Scalar tolerance)
|
---|
55 | {
|
---|
56 | int size = points[0]->size();
|
---|
57 | assert(size==2);
|
---|
58 | VectorType result(size);
|
---|
59 | linearRegression(numPoints, points, &result, 1);
|
---|
60 | typename VectorType::Scalar error = (result - original).norm() / original.norm();
|
---|
61 | VERIFY(ei_abs(error) < ei_abs(tolerance));
|
---|
62 | }
|
---|
63 |
|
---|
64 | template<typename VectorType,
|
---|
65 | typename HyperplaneType>
|
---|
66 | void check_fitHyperplane(int numPoints,
|
---|
67 | VectorType **points,
|
---|
68 | const HyperplaneType& original,
|
---|
69 | typename VectorType::Scalar tolerance)
|
---|
70 | {
|
---|
71 | int size = points[0]->size();
|
---|
72 | HyperplaneType result(size);
|
---|
73 | fitHyperplane(numPoints, points, &result);
|
---|
74 | result.coeffs() *= original.coeffs().coeff(size)/result.coeffs().coeff(size);
|
---|
75 | typename VectorType::Scalar error = (result.coeffs() - original.coeffs()).norm() / original.coeffs().norm();
|
---|
76 | std::cout << ei_abs(error) << " xxx " << ei_abs(tolerance) << std::endl;
|
---|
77 | VERIFY(ei_abs(error) < ei_abs(tolerance));
|
---|
78 | }
|
---|
79 |
|
---|
80 | void test_eigen2_regression()
|
---|
81 | {
|
---|
82 | for(int i = 0; i < g_repeat; i++)
|
---|
83 | {
|
---|
84 | #ifdef EIGEN_TEST_PART_1
|
---|
85 | {
|
---|
86 | Vector2f points2f [1000];
|
---|
87 | Vector2f *points2f_ptrs [1000];
|
---|
88 | for(int i = 0; i < 1000; i++) points2f_ptrs[i] = &(points2f[i]);
|
---|
89 | Vector2f coeffs2f;
|
---|
90 | Hyperplane<float,2> coeffs3f;
|
---|
91 | makeNoisyCohyperplanarPoints(1000, points2f_ptrs, &coeffs3f, 0.01f);
|
---|
92 | coeffs2f[0] = -coeffs3f.coeffs()[0]/coeffs3f.coeffs()[1];
|
---|
93 | coeffs2f[1] = -coeffs3f.coeffs()[2]/coeffs3f.coeffs()[1];
|
---|
94 | CALL_SUBTEST(check_linearRegression(10, points2f_ptrs, coeffs2f, 0.05f));
|
---|
95 | CALL_SUBTEST(check_linearRegression(100, points2f_ptrs, coeffs2f, 0.01f));
|
---|
96 | CALL_SUBTEST(check_linearRegression(1000, points2f_ptrs, coeffs2f, 0.002f));
|
---|
97 | }
|
---|
98 | #endif
|
---|
99 | #ifdef EIGEN_TEST_PART_2
|
---|
100 | {
|
---|
101 | Vector2f points2f [1000];
|
---|
102 | Vector2f *points2f_ptrs [1000];
|
---|
103 | for(int i = 0; i < 1000; i++) points2f_ptrs[i] = &(points2f[i]);
|
---|
104 | Hyperplane<float,2> coeffs3f;
|
---|
105 | makeNoisyCohyperplanarPoints(1000, points2f_ptrs, &coeffs3f, 0.01f);
|
---|
106 | CALL_SUBTEST(check_fitHyperplane(10, points2f_ptrs, coeffs3f, 0.05f));
|
---|
107 | CALL_SUBTEST(check_fitHyperplane(100, points2f_ptrs, coeffs3f, 0.01f));
|
---|
108 | CALL_SUBTEST(check_fitHyperplane(1000, points2f_ptrs, coeffs3f, 0.002f));
|
---|
109 | }
|
---|
110 | #endif
|
---|
111 | #ifdef EIGEN_TEST_PART_3
|
---|
112 | {
|
---|
113 | Vector4d points4d [1000];
|
---|
114 | Vector4d *points4d_ptrs [1000];
|
---|
115 | for(int i = 0; i < 1000; i++) points4d_ptrs[i] = &(points4d[i]);
|
---|
116 | Hyperplane<double,4> coeffs5d;
|
---|
117 | makeNoisyCohyperplanarPoints(1000, points4d_ptrs, &coeffs5d, 0.01);
|
---|
118 | CALL_SUBTEST(check_fitHyperplane(10, points4d_ptrs, coeffs5d, 0.05));
|
---|
119 | CALL_SUBTEST(check_fitHyperplane(100, points4d_ptrs, coeffs5d, 0.01));
|
---|
120 | CALL_SUBTEST(check_fitHyperplane(1000, points4d_ptrs, coeffs5d, 0.002));
|
---|
121 | }
|
---|
122 | #endif
|
---|
123 | #ifdef EIGEN_TEST_PART_4
|
---|
124 | {
|
---|
125 | VectorXcd *points11cd_ptrs[1000];
|
---|
126 | for(int i = 0; i < 1000; i++) points11cd_ptrs[i] = new VectorXcd(11);
|
---|
127 | Hyperplane<std::complex<double>,Dynamic> *coeffs12cd = new Hyperplane<std::complex<double>,Dynamic>(11);
|
---|
128 | makeNoisyCohyperplanarPoints(1000, points11cd_ptrs, coeffs12cd, 0.01);
|
---|
129 | CALL_SUBTEST(check_fitHyperplane(100, points11cd_ptrs, *coeffs12cd, 0.025));
|
---|
130 | CALL_SUBTEST(check_fitHyperplane(1000, points11cd_ptrs, *coeffs12cd, 0.006));
|
---|
131 | delete coeffs12cd;
|
---|
132 | for(int i = 0; i < 1000; i++) delete points11cd_ptrs[i];
|
---|
133 | }
|
---|
134 | #endif
|
---|
135 | }
|
---|
136 | }
|
---|