source: pacpussensors/trunk/Vislab/lib3dv-1.2.0/lib3dv/eigen/test/eigen2/eigen2_submatrices.cpp

Last change on this file was 136, checked in by ldecherf, 8 years ago

Doc

File size: 5.6 KB
Line 
1// This file is part of Eigen, a lightweight C++ template library
2// for linear algebra. Eigen itself is part of the KDE project.
3//
4// Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
5//
6// This Source Code Form is subject to the terms of the Mozilla
7// Public License v. 2.0. If a copy of the MPL was not distributed
8// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
9
10#include "main.h"
11
12// check minor separately in order to avoid the possible creation of a zero-sized
13// array. Comes from a compilation error with gcc-3.4 or gcc-4 with -ansi -pedantic.
14// Another solution would be to declare the array like this: T m_data[Size==0?1:Size]; in ei_matrix_storage
15// but this is probably not bad to raise such an error at compile time...
16template<typename Scalar, int _Rows, int _Cols> struct CheckMinor
17{
18 typedef Matrix<Scalar, _Rows, _Cols> MatrixType;
19 CheckMinor(MatrixType& m1, int r1, int c1)
20 {
21 int rows = m1.rows();
22 int cols = m1.cols();
23
24 Matrix<Scalar, Dynamic, Dynamic> mi = m1.minor(0,0).eval();
25 VERIFY_IS_APPROX(mi, m1.block(1,1,rows-1,cols-1));
26 mi = m1.minor(r1,c1);
27 VERIFY_IS_APPROX(mi.transpose(), m1.transpose().minor(c1,r1));
28 //check operator(), both constant and non-constant, on minor()
29 m1.minor(r1,c1)(0,0) = m1.minor(0,0)(0,0);
30 }
31};
32
33template<typename Scalar> struct CheckMinor<Scalar,1,1>
34{
35 typedef Matrix<Scalar, 1, 1> MatrixType;
36 CheckMinor(MatrixType&, int, int) {}
37};
38
39template<typename MatrixType> void submatrices(const MatrixType& m)
40{
41 /* this test covers the following files:
42 Row.h Column.h Block.h Minor.h DiagonalCoeffs.h
43 */
44 typedef typename MatrixType::Scalar Scalar;
45 typedef typename MatrixType::RealScalar RealScalar;
46 typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> VectorType;
47 typedef Matrix<Scalar, 1, MatrixType::ColsAtCompileTime> RowVectorType;
48 int rows = m.rows();
49 int cols = m.cols();
50
51 MatrixType m1 = MatrixType::Random(rows, cols),
52 m2 = MatrixType::Random(rows, cols),
53 m3(rows, cols),
54 ones = MatrixType::Ones(rows, cols),
55 square = Matrix<Scalar, MatrixType::RowsAtCompileTime, MatrixType::RowsAtCompileTime>
56 ::Random(rows, rows);
57 VectorType v1 = VectorType::Random(rows);
58
59 Scalar s1 = ei_random<Scalar>();
60
61 int r1 = ei_random<int>(0,rows-1);
62 int r2 = ei_random<int>(r1,rows-1);
63 int c1 = ei_random<int>(0,cols-1);
64 int c2 = ei_random<int>(c1,cols-1);
65
66 //check row() and col()
67 VERIFY_IS_APPROX(m1.col(c1).transpose(), m1.transpose().row(c1));
68 VERIFY_IS_APPROX(square.row(r1).eigen2_dot(m1.col(c1)), (square.lazy() * m1.conjugate())(r1,c1));
69 //check operator(), both constant and non-constant, on row() and col()
70 m1.row(r1) += s1 * m1.row(r2);
71 m1.col(c1) += s1 * m1.col(c2);
72
73 //check block()
74 Matrix<Scalar,Dynamic,Dynamic> b1(1,1); b1(0,0) = m1(r1,c1);
75 RowVectorType br1(m1.block(r1,0,1,cols));
76 VectorType bc1(m1.block(0,c1,rows,1));
77 VERIFY_IS_APPROX(b1, m1.block(r1,c1,1,1));
78 VERIFY_IS_APPROX(m1.row(r1), br1);
79 VERIFY_IS_APPROX(m1.col(c1), bc1);
80 //check operator(), both constant and non-constant, on block()
81 m1.block(r1,c1,r2-r1+1,c2-c1+1) = s1 * m2.block(0, 0, r2-r1+1,c2-c1+1);
82 m1.block(r1,c1,r2-r1+1,c2-c1+1)(r2-r1,c2-c1) = m2.block(0, 0, r2-r1+1,c2-c1+1)(0,0);
83
84 //check minor()
85 CheckMinor<Scalar, MatrixType::RowsAtCompileTime, MatrixType::ColsAtCompileTime> checkminor(m1,r1,c1);
86
87 //check diagonal()
88 VERIFY_IS_APPROX(m1.diagonal(), m1.transpose().diagonal());
89 m2.diagonal() = 2 * m1.diagonal();
90 m2.diagonal()[0] *= 3;
91 VERIFY_IS_APPROX(m2.diagonal()[0], static_cast<Scalar>(6) * m1.diagonal()[0]);
92
93 enum {
94 BlockRows = EIGEN_SIZE_MIN_PREFER_FIXED(MatrixType::RowsAtCompileTime,2),
95 BlockCols = EIGEN_SIZE_MIN_PREFER_FIXED(MatrixType::ColsAtCompileTime,5)
96 };
97 if (rows>=5 && cols>=8)
98 {
99 // test fixed block() as lvalue
100 m1.template block<BlockRows,BlockCols>(1,1) *= s1;
101 // test operator() on fixed block() both as constant and non-constant
102 m1.template block<BlockRows,BlockCols>(1,1)(0, 3) = m1.template block<2,5>(1,1)(1,2);
103 // check that fixed block() and block() agree
104 Matrix<Scalar,Dynamic,Dynamic> b = m1.template block<BlockRows,BlockCols>(3,3);
105 VERIFY_IS_APPROX(b, m1.block(3,3,BlockRows,BlockCols));
106 }
107
108 if (rows>2)
109 {
110 // test sub vectors
111 VERIFY_IS_APPROX(v1.template start<2>(), v1.block(0,0,2,1));
112 VERIFY_IS_APPROX(v1.template start<2>(), v1.start(2));
113 VERIFY_IS_APPROX(v1.template start<2>(), v1.segment(0,2));
114 VERIFY_IS_APPROX(v1.template start<2>(), v1.template segment<2>(0));
115 int i = rows-2;
116 VERIFY_IS_APPROX(v1.template end<2>(), v1.block(i,0,2,1));
117 VERIFY_IS_APPROX(v1.template end<2>(), v1.end(2));
118 VERIFY_IS_APPROX(v1.template end<2>(), v1.segment(i,2));
119 VERIFY_IS_APPROX(v1.template end<2>(), v1.template segment<2>(i));
120 i = ei_random(0,rows-2);
121 VERIFY_IS_APPROX(v1.segment(i,2), v1.template segment<2>(i));
122 }
123
124 // stress some basic stuffs with block matrices
125 VERIFY(ei_real(ones.col(c1).sum()) == RealScalar(rows));
126 VERIFY(ei_real(ones.row(r1).sum()) == RealScalar(cols));
127
128 VERIFY(ei_real(ones.col(c1).eigen2_dot(ones.col(c2))) == RealScalar(rows));
129 VERIFY(ei_real(ones.row(r1).eigen2_dot(ones.row(r2))) == RealScalar(cols));
130}
131
132void test_eigen2_submatrices()
133{
134 for(int i = 0; i < g_repeat; i++) {
135 CALL_SUBTEST_1( submatrices(Matrix<float, 1, 1>()) );
136 CALL_SUBTEST_2( submatrices(Matrix4d()) );
137 CALL_SUBTEST_3( submatrices(MatrixXcf(3, 3)) );
138 CALL_SUBTEST_4( submatrices(MatrixXi(8, 12)) );
139 CALL_SUBTEST_5( submatrices(MatrixXcd(20, 20)) );
140 CALL_SUBTEST_6( submatrices(MatrixXf(20, 20)) );
141 }
142}
Note: See TracBrowser for help on using the repository browser.