1 | // This file is part of Eigen, a lightweight C++ template library
|
---|
2 | // for linear algebra. Eigen itself is part of the KDE project.
|
---|
3 | //
|
---|
4 | // Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
|
---|
5 | //
|
---|
6 | // This Source Code Form is subject to the terms of the Mozilla
|
---|
7 | // Public License v. 2.0. If a copy of the MPL was not distributed
|
---|
8 | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
---|
9 |
|
---|
10 | #include "main.h"
|
---|
11 |
|
---|
12 | // check minor separately in order to avoid the possible creation of a zero-sized
|
---|
13 | // array. Comes from a compilation error with gcc-3.4 or gcc-4 with -ansi -pedantic.
|
---|
14 | // Another solution would be to declare the array like this: T m_data[Size==0?1:Size]; in ei_matrix_storage
|
---|
15 | // but this is probably not bad to raise such an error at compile time...
|
---|
16 | template<typename Scalar, int _Rows, int _Cols> struct CheckMinor
|
---|
17 | {
|
---|
18 | typedef Matrix<Scalar, _Rows, _Cols> MatrixType;
|
---|
19 | CheckMinor(MatrixType& m1, int r1, int c1)
|
---|
20 | {
|
---|
21 | int rows = m1.rows();
|
---|
22 | int cols = m1.cols();
|
---|
23 |
|
---|
24 | Matrix<Scalar, Dynamic, Dynamic> mi = m1.minor(0,0).eval();
|
---|
25 | VERIFY_IS_APPROX(mi, m1.block(1,1,rows-1,cols-1));
|
---|
26 | mi = m1.minor(r1,c1);
|
---|
27 | VERIFY_IS_APPROX(mi.transpose(), m1.transpose().minor(c1,r1));
|
---|
28 | //check operator(), both constant and non-constant, on minor()
|
---|
29 | m1.minor(r1,c1)(0,0) = m1.minor(0,0)(0,0);
|
---|
30 | }
|
---|
31 | };
|
---|
32 |
|
---|
33 | template<typename Scalar> struct CheckMinor<Scalar,1,1>
|
---|
34 | {
|
---|
35 | typedef Matrix<Scalar, 1, 1> MatrixType;
|
---|
36 | CheckMinor(MatrixType&, int, int) {}
|
---|
37 | };
|
---|
38 |
|
---|
39 | template<typename MatrixType> void submatrices(const MatrixType& m)
|
---|
40 | {
|
---|
41 | /* this test covers the following files:
|
---|
42 | Row.h Column.h Block.h Minor.h DiagonalCoeffs.h
|
---|
43 | */
|
---|
44 | typedef typename MatrixType::Scalar Scalar;
|
---|
45 | typedef typename MatrixType::RealScalar RealScalar;
|
---|
46 | typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> VectorType;
|
---|
47 | typedef Matrix<Scalar, 1, MatrixType::ColsAtCompileTime> RowVectorType;
|
---|
48 | int rows = m.rows();
|
---|
49 | int cols = m.cols();
|
---|
50 |
|
---|
51 | MatrixType m1 = MatrixType::Random(rows, cols),
|
---|
52 | m2 = MatrixType::Random(rows, cols),
|
---|
53 | m3(rows, cols),
|
---|
54 | ones = MatrixType::Ones(rows, cols),
|
---|
55 | square = Matrix<Scalar, MatrixType::RowsAtCompileTime, MatrixType::RowsAtCompileTime>
|
---|
56 | ::Random(rows, rows);
|
---|
57 | VectorType v1 = VectorType::Random(rows);
|
---|
58 |
|
---|
59 | Scalar s1 = ei_random<Scalar>();
|
---|
60 |
|
---|
61 | int r1 = ei_random<int>(0,rows-1);
|
---|
62 | int r2 = ei_random<int>(r1,rows-1);
|
---|
63 | int c1 = ei_random<int>(0,cols-1);
|
---|
64 | int c2 = ei_random<int>(c1,cols-1);
|
---|
65 |
|
---|
66 | //check row() and col()
|
---|
67 | VERIFY_IS_APPROX(m1.col(c1).transpose(), m1.transpose().row(c1));
|
---|
68 | VERIFY_IS_APPROX(square.row(r1).eigen2_dot(m1.col(c1)), (square.lazy() * m1.conjugate())(r1,c1));
|
---|
69 | //check operator(), both constant and non-constant, on row() and col()
|
---|
70 | m1.row(r1) += s1 * m1.row(r2);
|
---|
71 | m1.col(c1) += s1 * m1.col(c2);
|
---|
72 |
|
---|
73 | //check block()
|
---|
74 | Matrix<Scalar,Dynamic,Dynamic> b1(1,1); b1(0,0) = m1(r1,c1);
|
---|
75 | RowVectorType br1(m1.block(r1,0,1,cols));
|
---|
76 | VectorType bc1(m1.block(0,c1,rows,1));
|
---|
77 | VERIFY_IS_APPROX(b1, m1.block(r1,c1,1,1));
|
---|
78 | VERIFY_IS_APPROX(m1.row(r1), br1);
|
---|
79 | VERIFY_IS_APPROX(m1.col(c1), bc1);
|
---|
80 | //check operator(), both constant and non-constant, on block()
|
---|
81 | m1.block(r1,c1,r2-r1+1,c2-c1+1) = s1 * m2.block(0, 0, r2-r1+1,c2-c1+1);
|
---|
82 | m1.block(r1,c1,r2-r1+1,c2-c1+1)(r2-r1,c2-c1) = m2.block(0, 0, r2-r1+1,c2-c1+1)(0,0);
|
---|
83 |
|
---|
84 | //check minor()
|
---|
85 | CheckMinor<Scalar, MatrixType::RowsAtCompileTime, MatrixType::ColsAtCompileTime> checkminor(m1,r1,c1);
|
---|
86 |
|
---|
87 | //check diagonal()
|
---|
88 | VERIFY_IS_APPROX(m1.diagonal(), m1.transpose().diagonal());
|
---|
89 | m2.diagonal() = 2 * m1.diagonal();
|
---|
90 | m2.diagonal()[0] *= 3;
|
---|
91 | VERIFY_IS_APPROX(m2.diagonal()[0], static_cast<Scalar>(6) * m1.diagonal()[0]);
|
---|
92 |
|
---|
93 | enum {
|
---|
94 | BlockRows = EIGEN_SIZE_MIN_PREFER_FIXED(MatrixType::RowsAtCompileTime,2),
|
---|
95 | BlockCols = EIGEN_SIZE_MIN_PREFER_FIXED(MatrixType::ColsAtCompileTime,5)
|
---|
96 | };
|
---|
97 | if (rows>=5 && cols>=8)
|
---|
98 | {
|
---|
99 | // test fixed block() as lvalue
|
---|
100 | m1.template block<BlockRows,BlockCols>(1,1) *= s1;
|
---|
101 | // test operator() on fixed block() both as constant and non-constant
|
---|
102 | m1.template block<BlockRows,BlockCols>(1,1)(0, 3) = m1.template block<2,5>(1,1)(1,2);
|
---|
103 | // check that fixed block() and block() agree
|
---|
104 | Matrix<Scalar,Dynamic,Dynamic> b = m1.template block<BlockRows,BlockCols>(3,3);
|
---|
105 | VERIFY_IS_APPROX(b, m1.block(3,3,BlockRows,BlockCols));
|
---|
106 | }
|
---|
107 |
|
---|
108 | if (rows>2)
|
---|
109 | {
|
---|
110 | // test sub vectors
|
---|
111 | VERIFY_IS_APPROX(v1.template start<2>(), v1.block(0,0,2,1));
|
---|
112 | VERIFY_IS_APPROX(v1.template start<2>(), v1.start(2));
|
---|
113 | VERIFY_IS_APPROX(v1.template start<2>(), v1.segment(0,2));
|
---|
114 | VERIFY_IS_APPROX(v1.template start<2>(), v1.template segment<2>(0));
|
---|
115 | int i = rows-2;
|
---|
116 | VERIFY_IS_APPROX(v1.template end<2>(), v1.block(i,0,2,1));
|
---|
117 | VERIFY_IS_APPROX(v1.template end<2>(), v1.end(2));
|
---|
118 | VERIFY_IS_APPROX(v1.template end<2>(), v1.segment(i,2));
|
---|
119 | VERIFY_IS_APPROX(v1.template end<2>(), v1.template segment<2>(i));
|
---|
120 | i = ei_random(0,rows-2);
|
---|
121 | VERIFY_IS_APPROX(v1.segment(i,2), v1.template segment<2>(i));
|
---|
122 | }
|
---|
123 |
|
---|
124 | // stress some basic stuffs with block matrices
|
---|
125 | VERIFY(ei_real(ones.col(c1).sum()) == RealScalar(rows));
|
---|
126 | VERIFY(ei_real(ones.row(r1).sum()) == RealScalar(cols));
|
---|
127 |
|
---|
128 | VERIFY(ei_real(ones.col(c1).eigen2_dot(ones.col(c2))) == RealScalar(rows));
|
---|
129 | VERIFY(ei_real(ones.row(r1).eigen2_dot(ones.row(r2))) == RealScalar(cols));
|
---|
130 | }
|
---|
131 |
|
---|
132 | void test_eigen2_submatrices()
|
---|
133 | {
|
---|
134 | for(int i = 0; i < g_repeat; i++) {
|
---|
135 | CALL_SUBTEST_1( submatrices(Matrix<float, 1, 1>()) );
|
---|
136 | CALL_SUBTEST_2( submatrices(Matrix4d()) );
|
---|
137 | CALL_SUBTEST_3( submatrices(MatrixXcf(3, 3)) );
|
---|
138 | CALL_SUBTEST_4( submatrices(MatrixXi(8, 12)) );
|
---|
139 | CALL_SUBTEST_5( submatrices(MatrixXcd(20, 20)) );
|
---|
140 | CALL_SUBTEST_6( submatrices(MatrixXf(20, 20)) );
|
---|
141 | }
|
---|
142 | }
|
---|