1 | // This file is part of Eigen, a lightweight C++ template library
|
---|
2 | // for linear algebra. Eigen itself is part of the KDE project.
|
---|
3 | //
|
---|
4 | // Copyright (C) 2008 Benoit Jacob <jacob.benoit.1@gmail.com>
|
---|
5 | //
|
---|
6 | // This Source Code Form is subject to the terms of the Mozilla
|
---|
7 | // Public License v. 2.0. If a copy of the MPL was not distributed
|
---|
8 | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
---|
9 |
|
---|
10 | #include "main.h"
|
---|
11 |
|
---|
12 | template<typename MatrixType> void matrixSum(const MatrixType& m)
|
---|
13 | {
|
---|
14 | typedef typename MatrixType::Scalar Scalar;
|
---|
15 |
|
---|
16 | int rows = m.rows();
|
---|
17 | int cols = m.cols();
|
---|
18 |
|
---|
19 | MatrixType m1 = MatrixType::Random(rows, cols);
|
---|
20 |
|
---|
21 | VERIFY_IS_MUCH_SMALLER_THAN(MatrixType::Zero(rows, cols).sum(), Scalar(1));
|
---|
22 | VERIFY_IS_APPROX(MatrixType::Ones(rows, cols).sum(), Scalar(float(rows*cols))); // the float() here to shut up excessive MSVC warning about int->complex conversion being lossy
|
---|
23 | Scalar x = Scalar(0);
|
---|
24 | for(int i = 0; i < rows; i++) for(int j = 0; j < cols; j++) x += m1(i,j);
|
---|
25 | VERIFY_IS_APPROX(m1.sum(), x);
|
---|
26 | }
|
---|
27 |
|
---|
28 | template<typename VectorType> void vectorSum(const VectorType& w)
|
---|
29 | {
|
---|
30 | typedef typename VectorType::Scalar Scalar;
|
---|
31 | int size = w.size();
|
---|
32 |
|
---|
33 | VectorType v = VectorType::Random(size);
|
---|
34 | for(int i = 1; i < size; i++)
|
---|
35 | {
|
---|
36 | Scalar s = Scalar(0);
|
---|
37 | for(int j = 0; j < i; j++) s += v[j];
|
---|
38 | VERIFY_IS_APPROX(s, v.start(i).sum());
|
---|
39 | }
|
---|
40 |
|
---|
41 | for(int i = 0; i < size-1; i++)
|
---|
42 | {
|
---|
43 | Scalar s = Scalar(0);
|
---|
44 | for(int j = i; j < size; j++) s += v[j];
|
---|
45 | VERIFY_IS_APPROX(s, v.end(size-i).sum());
|
---|
46 | }
|
---|
47 |
|
---|
48 | for(int i = 0; i < size/2; i++)
|
---|
49 | {
|
---|
50 | Scalar s = Scalar(0);
|
---|
51 | for(int j = i; j < size-i; j++) s += v[j];
|
---|
52 | VERIFY_IS_APPROX(s, v.segment(i, size-2*i).sum());
|
---|
53 | }
|
---|
54 | }
|
---|
55 |
|
---|
56 | void test_eigen2_sum()
|
---|
57 | {
|
---|
58 | for(int i = 0; i < g_repeat; i++) {
|
---|
59 | CALL_SUBTEST_1( matrixSum(Matrix<float, 1, 1>()) );
|
---|
60 | CALL_SUBTEST_2( matrixSum(Matrix2f()) );
|
---|
61 | CALL_SUBTEST_3( matrixSum(Matrix4d()) );
|
---|
62 | CALL_SUBTEST_4( matrixSum(MatrixXcf(3, 3)) );
|
---|
63 | CALL_SUBTEST_5( matrixSum(MatrixXf(8, 12)) );
|
---|
64 | CALL_SUBTEST_6( matrixSum(MatrixXi(8, 12)) );
|
---|
65 | }
|
---|
66 | for(int i = 0; i < g_repeat; i++) {
|
---|
67 | CALL_SUBTEST_5( vectorSum(VectorXf(5)) );
|
---|
68 | CALL_SUBTEST_7( vectorSum(VectorXd(10)) );
|
---|
69 | CALL_SUBTEST_5( vectorSum(VectorXf(33)) );
|
---|
70 | }
|
---|
71 | }
|
---|