1 | // This file is part of Eigen, a lightweight C++ template library
|
---|
2 | // for linear algebra. Eigen itself is part of the KDE project.
|
---|
3 | //
|
---|
4 | // Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr>
|
---|
5 | //
|
---|
6 | // This Source Code Form is subject to the terms of the Mozilla
|
---|
7 | // Public License v. 2.0. If a copy of the MPL was not distributed
|
---|
8 | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
---|
9 |
|
---|
10 | #include "main.h"
|
---|
11 | #include <Eigen/SVD>
|
---|
12 |
|
---|
13 | template<typename MatrixType> void svd(const MatrixType& m)
|
---|
14 | {
|
---|
15 | /* this test covers the following files:
|
---|
16 | SVD.h
|
---|
17 | */
|
---|
18 | int rows = m.rows();
|
---|
19 | int cols = m.cols();
|
---|
20 |
|
---|
21 | typedef typename MatrixType::Scalar Scalar;
|
---|
22 | typedef typename NumTraits<Scalar>::Real RealScalar;
|
---|
23 | MatrixType a = MatrixType::Random(rows,cols);
|
---|
24 | Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> b =
|
---|
25 | Matrix<Scalar, MatrixType::RowsAtCompileTime, 1>::Random(rows,1);
|
---|
26 | Matrix<Scalar, MatrixType::ColsAtCompileTime, 1> x(cols,1), x2(cols,1);
|
---|
27 |
|
---|
28 | RealScalar largerEps = test_precision<RealScalar>();
|
---|
29 | if (ei_is_same_type<RealScalar,float>::ret)
|
---|
30 | largerEps = 1e-3f;
|
---|
31 |
|
---|
32 | {
|
---|
33 | SVD<MatrixType> svd(a);
|
---|
34 | MatrixType sigma = MatrixType::Zero(rows,cols);
|
---|
35 | MatrixType matU = MatrixType::Zero(rows,rows);
|
---|
36 | sigma.block(0,0,cols,cols) = svd.singularValues().asDiagonal();
|
---|
37 | matU.block(0,0,rows,cols) = svd.matrixU();
|
---|
38 | VERIFY_IS_APPROX(a, matU * sigma * svd.matrixV().transpose());
|
---|
39 | }
|
---|
40 |
|
---|
41 |
|
---|
42 | if (rows==cols)
|
---|
43 | {
|
---|
44 | if (ei_is_same_type<RealScalar,float>::ret)
|
---|
45 | {
|
---|
46 | MatrixType a1 = MatrixType::Random(rows,cols);
|
---|
47 | a += a * a.adjoint() + a1 * a1.adjoint();
|
---|
48 | }
|
---|
49 | SVD<MatrixType> svd(a);
|
---|
50 | svd.solve(b, &x);
|
---|
51 | VERIFY_IS_APPROX(a * x,b);
|
---|
52 | }
|
---|
53 |
|
---|
54 |
|
---|
55 | if(rows==cols)
|
---|
56 | {
|
---|
57 | SVD<MatrixType> svd(a);
|
---|
58 | MatrixType unitary, positive;
|
---|
59 | svd.computeUnitaryPositive(&unitary, &positive);
|
---|
60 | VERIFY_IS_APPROX(unitary * unitary.adjoint(), MatrixType::Identity(unitary.rows(),unitary.rows()));
|
---|
61 | VERIFY_IS_APPROX(positive, positive.adjoint());
|
---|
62 | for(int i = 0; i < rows; i++) VERIFY(positive.diagonal()[i] >= 0); // cheap necessary (not sufficient) condition for positivity
|
---|
63 | VERIFY_IS_APPROX(unitary*positive, a);
|
---|
64 |
|
---|
65 | svd.computePositiveUnitary(&positive, &unitary);
|
---|
66 | VERIFY_IS_APPROX(unitary * unitary.adjoint(), MatrixType::Identity(unitary.rows(),unitary.rows()));
|
---|
67 | VERIFY_IS_APPROX(positive, positive.adjoint());
|
---|
68 | for(int i = 0; i < rows; i++) VERIFY(positive.diagonal()[i] >= 0); // cheap necessary (not sufficient) condition for positivity
|
---|
69 | VERIFY_IS_APPROX(positive*unitary, a);
|
---|
70 | }
|
---|
71 | }
|
---|
72 |
|
---|
73 | void test_eigen2_svd()
|
---|
74 | {
|
---|
75 | for(int i = 0; i < g_repeat; i++) {
|
---|
76 | CALL_SUBTEST_1( svd(Matrix3f()) );
|
---|
77 | CALL_SUBTEST_2( svd(Matrix4d()) );
|
---|
78 | CALL_SUBTEST_3( svd(MatrixXf(7,7)) );
|
---|
79 | CALL_SUBTEST_4( svd(MatrixXd(14,7)) );
|
---|
80 | // complex are not implemented yet
|
---|
81 | // CALL_SUBTEST( svd(MatrixXcd(6,6)) );
|
---|
82 | // CALL_SUBTEST( svd(MatrixXcf(3,3)) );
|
---|
83 | SVD<MatrixXf> s;
|
---|
84 | MatrixXf m = MatrixXf::Random(10,1);
|
---|
85 | s.compute(m);
|
---|
86 | }
|
---|
87 | }
|
---|