1 | // This file is part of Eigen, a lightweight C++ template library
|
---|
2 | // for linear algebra.
|
---|
3 | //
|
---|
4 | // Copyright (C) 2008-2009 Gael Guennebaud <gael.guennebaud@inria.fr>
|
---|
5 | // Copyright (C) 2010 Jitse Niesen <jitse@maths.leeds.ac.uk>
|
---|
6 | //
|
---|
7 | // This Source Code Form is subject to the terms of the Mozilla
|
---|
8 | // Public License v. 2.0. If a copy of the MPL was not distributed
|
---|
9 | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
---|
10 |
|
---|
11 | #include "main.h"
|
---|
12 | #include <limits>
|
---|
13 | #include <Eigen/Eigenvalues>
|
---|
14 | #include <Eigen/LU>
|
---|
15 |
|
---|
16 | /* Check that two column vectors are approximately equal upto permutations,
|
---|
17 | by checking that the k-th power sums are equal for k = 1, ..., vec1.rows() */
|
---|
18 | template<typename VectorType>
|
---|
19 | void verify_is_approx_upto_permutation(const VectorType& vec1, const VectorType& vec2)
|
---|
20 | {
|
---|
21 | typedef typename NumTraits<typename VectorType::Scalar>::Real RealScalar;
|
---|
22 |
|
---|
23 | VERIFY(vec1.cols() == 1);
|
---|
24 | VERIFY(vec2.cols() == 1);
|
---|
25 | VERIFY(vec1.rows() == vec2.rows());
|
---|
26 | for (int k = 1; k <= vec1.rows(); ++k)
|
---|
27 | {
|
---|
28 | VERIFY_IS_APPROX(vec1.array().pow(RealScalar(k)).sum(), vec2.array().pow(RealScalar(k)).sum());
|
---|
29 | }
|
---|
30 | }
|
---|
31 |
|
---|
32 |
|
---|
33 | template<typename MatrixType> void eigensolver(const MatrixType& m)
|
---|
34 | {
|
---|
35 | typedef typename MatrixType::Index Index;
|
---|
36 | /* this test covers the following files:
|
---|
37 | ComplexEigenSolver.h, and indirectly ComplexSchur.h
|
---|
38 | */
|
---|
39 | Index rows = m.rows();
|
---|
40 | Index cols = m.cols();
|
---|
41 |
|
---|
42 | typedef typename MatrixType::Scalar Scalar;
|
---|
43 | typedef typename NumTraits<Scalar>::Real RealScalar;
|
---|
44 |
|
---|
45 | MatrixType a = MatrixType::Random(rows,cols);
|
---|
46 | MatrixType symmA = a.adjoint() * a;
|
---|
47 |
|
---|
48 | ComplexEigenSolver<MatrixType> ei0(symmA);
|
---|
49 | VERIFY_IS_EQUAL(ei0.info(), Success);
|
---|
50 | VERIFY_IS_APPROX(symmA * ei0.eigenvectors(), ei0.eigenvectors() * ei0.eigenvalues().asDiagonal());
|
---|
51 |
|
---|
52 | ComplexEigenSolver<MatrixType> ei1(a);
|
---|
53 | VERIFY_IS_EQUAL(ei1.info(), Success);
|
---|
54 | VERIFY_IS_APPROX(a * ei1.eigenvectors(), ei1.eigenvectors() * ei1.eigenvalues().asDiagonal());
|
---|
55 | // Note: If MatrixType is real then a.eigenvalues() uses EigenSolver and thus
|
---|
56 | // another algorithm so results may differ slightly
|
---|
57 | verify_is_approx_upto_permutation(a.eigenvalues(), ei1.eigenvalues());
|
---|
58 |
|
---|
59 | ComplexEigenSolver<MatrixType> ei2;
|
---|
60 | ei2.setMaxIterations(ComplexSchur<MatrixType>::m_maxIterationsPerRow * rows).compute(a);
|
---|
61 | VERIFY_IS_EQUAL(ei2.info(), Success);
|
---|
62 | VERIFY_IS_EQUAL(ei2.eigenvectors(), ei1.eigenvectors());
|
---|
63 | VERIFY_IS_EQUAL(ei2.eigenvalues(), ei1.eigenvalues());
|
---|
64 | if (rows > 2) {
|
---|
65 | ei2.setMaxIterations(1).compute(a);
|
---|
66 | VERIFY_IS_EQUAL(ei2.info(), NoConvergence);
|
---|
67 | VERIFY_IS_EQUAL(ei2.getMaxIterations(), 1);
|
---|
68 | }
|
---|
69 |
|
---|
70 | ComplexEigenSolver<MatrixType> eiNoEivecs(a, false);
|
---|
71 | VERIFY_IS_EQUAL(eiNoEivecs.info(), Success);
|
---|
72 | VERIFY_IS_APPROX(ei1.eigenvalues(), eiNoEivecs.eigenvalues());
|
---|
73 |
|
---|
74 | // Regression test for issue #66
|
---|
75 | MatrixType z = MatrixType::Zero(rows,cols);
|
---|
76 | ComplexEigenSolver<MatrixType> eiz(z);
|
---|
77 | VERIFY((eiz.eigenvalues().cwiseEqual(0)).all());
|
---|
78 |
|
---|
79 | MatrixType id = MatrixType::Identity(rows, cols);
|
---|
80 | VERIFY_IS_APPROX(id.operatorNorm(), RealScalar(1));
|
---|
81 |
|
---|
82 | if (rows > 1)
|
---|
83 | {
|
---|
84 | // Test matrix with NaN
|
---|
85 | a(0,0) = std::numeric_limits<typename MatrixType::RealScalar>::quiet_NaN();
|
---|
86 | ComplexEigenSolver<MatrixType> eiNaN(a);
|
---|
87 | VERIFY_IS_EQUAL(eiNaN.info(), NoConvergence);
|
---|
88 | }
|
---|
89 | }
|
---|
90 |
|
---|
91 | template<typename MatrixType> void eigensolver_verify_assert(const MatrixType& m)
|
---|
92 | {
|
---|
93 | ComplexEigenSolver<MatrixType> eig;
|
---|
94 | VERIFY_RAISES_ASSERT(eig.eigenvectors());
|
---|
95 | VERIFY_RAISES_ASSERT(eig.eigenvalues());
|
---|
96 |
|
---|
97 | MatrixType a = MatrixType::Random(m.rows(),m.cols());
|
---|
98 | eig.compute(a, false);
|
---|
99 | VERIFY_RAISES_ASSERT(eig.eigenvectors());
|
---|
100 | }
|
---|
101 |
|
---|
102 | void test_eigensolver_complex()
|
---|
103 | {
|
---|
104 | int s = 0;
|
---|
105 | for(int i = 0; i < g_repeat; i++) {
|
---|
106 | CALL_SUBTEST_1( eigensolver(Matrix4cf()) );
|
---|
107 | s = internal::random<int>(1,EIGEN_TEST_MAX_SIZE/4);
|
---|
108 | CALL_SUBTEST_2( eigensolver(MatrixXcd(s,s)) );
|
---|
109 | CALL_SUBTEST_3( eigensolver(Matrix<std::complex<float>, 1, 1>()) );
|
---|
110 | CALL_SUBTEST_4( eigensolver(Matrix3f()) );
|
---|
111 | }
|
---|
112 | CALL_SUBTEST_1( eigensolver_verify_assert(Matrix4cf()) );
|
---|
113 | s = internal::random<int>(1,EIGEN_TEST_MAX_SIZE/4);
|
---|
114 | CALL_SUBTEST_2( eigensolver_verify_assert(MatrixXcd(s,s)) );
|
---|
115 | CALL_SUBTEST_3( eigensolver_verify_assert(Matrix<std::complex<float>, 1, 1>()) );
|
---|
116 | CALL_SUBTEST_4( eigensolver_verify_assert(Matrix3f()) );
|
---|
117 |
|
---|
118 | // Test problem size constructors
|
---|
119 | CALL_SUBTEST_5(ComplexEigenSolver<MatrixXf> tmp(s));
|
---|
120 |
|
---|
121 | TEST_SET_BUT_UNUSED_VARIABLE(s)
|
---|
122 | }
|
---|