1 | // This file is part of Eigen, a lightweight C++ template library
|
---|
2 | // for linear algebra.
|
---|
3 | //
|
---|
4 | // Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
|
---|
5 | // Copyright (C) 2010 Jitse Niesen <jitse@maths.leeds.ac.uk>
|
---|
6 | //
|
---|
7 | // This Source Code Form is subject to the terms of the Mozilla
|
---|
8 | // Public License v. 2.0. If a copy of the MPL was not distributed
|
---|
9 | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
---|
10 |
|
---|
11 | #include "main.h"
|
---|
12 | #include <limits>
|
---|
13 | #include <Eigen/Eigenvalues>
|
---|
14 |
|
---|
15 | template<typename MatrixType> void selfadjointeigensolver(const MatrixType& m)
|
---|
16 | {
|
---|
17 | typedef typename MatrixType::Index Index;
|
---|
18 | /* this test covers the following files:
|
---|
19 | EigenSolver.h, SelfAdjointEigenSolver.h (and indirectly: Tridiagonalization.h)
|
---|
20 | */
|
---|
21 | Index rows = m.rows();
|
---|
22 | Index cols = m.cols();
|
---|
23 |
|
---|
24 | typedef typename MatrixType::Scalar Scalar;
|
---|
25 | typedef typename NumTraits<Scalar>::Real RealScalar;
|
---|
26 |
|
---|
27 | RealScalar largerEps = 10*test_precision<RealScalar>();
|
---|
28 |
|
---|
29 | MatrixType a = MatrixType::Random(rows,cols);
|
---|
30 | MatrixType a1 = MatrixType::Random(rows,cols);
|
---|
31 | MatrixType symmA = a.adjoint() * a + a1.adjoint() * a1;
|
---|
32 | MatrixType symmC = symmA;
|
---|
33 |
|
---|
34 | // randomly nullify some rows/columns
|
---|
35 | {
|
---|
36 | Index count = 1;//internal::random<Index>(-cols,cols);
|
---|
37 | for(Index k=0; k<count; ++k)
|
---|
38 | {
|
---|
39 | Index i = internal::random<Index>(0,cols-1);
|
---|
40 | symmA.row(i).setZero();
|
---|
41 | symmA.col(i).setZero();
|
---|
42 | }
|
---|
43 | }
|
---|
44 |
|
---|
45 | symmA.template triangularView<StrictlyUpper>().setZero();
|
---|
46 | symmC.template triangularView<StrictlyUpper>().setZero();
|
---|
47 |
|
---|
48 | MatrixType b = MatrixType::Random(rows,cols);
|
---|
49 | MatrixType b1 = MatrixType::Random(rows,cols);
|
---|
50 | MatrixType symmB = b.adjoint() * b + b1.adjoint() * b1;
|
---|
51 | symmB.template triangularView<StrictlyUpper>().setZero();
|
---|
52 |
|
---|
53 | SelfAdjointEigenSolver<MatrixType> eiSymm(symmA);
|
---|
54 | SelfAdjointEigenSolver<MatrixType> eiDirect;
|
---|
55 | eiDirect.computeDirect(symmA);
|
---|
56 | // generalized eigen pb
|
---|
57 | GeneralizedSelfAdjointEigenSolver<MatrixType> eiSymmGen(symmC, symmB);
|
---|
58 |
|
---|
59 | VERIFY_IS_EQUAL(eiSymm.info(), Success);
|
---|
60 | VERIFY((symmA.template selfadjointView<Lower>() * eiSymm.eigenvectors()).isApprox(
|
---|
61 | eiSymm.eigenvectors() * eiSymm.eigenvalues().asDiagonal(), largerEps));
|
---|
62 | VERIFY_IS_APPROX(symmA.template selfadjointView<Lower>().eigenvalues(), eiSymm.eigenvalues());
|
---|
63 |
|
---|
64 | VERIFY_IS_EQUAL(eiDirect.info(), Success);
|
---|
65 | VERIFY((symmA.template selfadjointView<Lower>() * eiDirect.eigenvectors()).isApprox(
|
---|
66 | eiDirect.eigenvectors() * eiDirect.eigenvalues().asDiagonal(), largerEps));
|
---|
67 | VERIFY_IS_APPROX(symmA.template selfadjointView<Lower>().eigenvalues(), eiDirect.eigenvalues());
|
---|
68 |
|
---|
69 | SelfAdjointEigenSolver<MatrixType> eiSymmNoEivecs(symmA, false);
|
---|
70 | VERIFY_IS_EQUAL(eiSymmNoEivecs.info(), Success);
|
---|
71 | VERIFY_IS_APPROX(eiSymm.eigenvalues(), eiSymmNoEivecs.eigenvalues());
|
---|
72 |
|
---|
73 | // generalized eigen problem Ax = lBx
|
---|
74 | eiSymmGen.compute(symmC, symmB,Ax_lBx);
|
---|
75 | VERIFY_IS_EQUAL(eiSymmGen.info(), Success);
|
---|
76 | VERIFY((symmC.template selfadjointView<Lower>() * eiSymmGen.eigenvectors()).isApprox(
|
---|
77 | symmB.template selfadjointView<Lower>() * (eiSymmGen.eigenvectors() * eiSymmGen.eigenvalues().asDiagonal()), largerEps));
|
---|
78 |
|
---|
79 | // generalized eigen problem BAx = lx
|
---|
80 | eiSymmGen.compute(symmC, symmB,BAx_lx);
|
---|
81 | VERIFY_IS_EQUAL(eiSymmGen.info(), Success);
|
---|
82 | VERIFY((symmB.template selfadjointView<Lower>() * (symmC.template selfadjointView<Lower>() * eiSymmGen.eigenvectors())).isApprox(
|
---|
83 | (eiSymmGen.eigenvectors() * eiSymmGen.eigenvalues().asDiagonal()), largerEps));
|
---|
84 |
|
---|
85 | // generalized eigen problem ABx = lx
|
---|
86 | eiSymmGen.compute(symmC, symmB,ABx_lx);
|
---|
87 | VERIFY_IS_EQUAL(eiSymmGen.info(), Success);
|
---|
88 | VERIFY((symmC.template selfadjointView<Lower>() * (symmB.template selfadjointView<Lower>() * eiSymmGen.eigenvectors())).isApprox(
|
---|
89 | (eiSymmGen.eigenvectors() * eiSymmGen.eigenvalues().asDiagonal()), largerEps));
|
---|
90 |
|
---|
91 |
|
---|
92 | eiSymm.compute(symmC);
|
---|
93 | MatrixType sqrtSymmA = eiSymm.operatorSqrt();
|
---|
94 | VERIFY_IS_APPROX(MatrixType(symmC.template selfadjointView<Lower>()), sqrtSymmA*sqrtSymmA);
|
---|
95 | VERIFY_IS_APPROX(sqrtSymmA, symmC.template selfadjointView<Lower>()*eiSymm.operatorInverseSqrt());
|
---|
96 |
|
---|
97 | MatrixType id = MatrixType::Identity(rows, cols);
|
---|
98 | VERIFY_IS_APPROX(id.template selfadjointView<Lower>().operatorNorm(), RealScalar(1));
|
---|
99 |
|
---|
100 | SelfAdjointEigenSolver<MatrixType> eiSymmUninitialized;
|
---|
101 | VERIFY_RAISES_ASSERT(eiSymmUninitialized.info());
|
---|
102 | VERIFY_RAISES_ASSERT(eiSymmUninitialized.eigenvalues());
|
---|
103 | VERIFY_RAISES_ASSERT(eiSymmUninitialized.eigenvectors());
|
---|
104 | VERIFY_RAISES_ASSERT(eiSymmUninitialized.operatorSqrt());
|
---|
105 | VERIFY_RAISES_ASSERT(eiSymmUninitialized.operatorInverseSqrt());
|
---|
106 |
|
---|
107 | eiSymmUninitialized.compute(symmA, false);
|
---|
108 | VERIFY_RAISES_ASSERT(eiSymmUninitialized.eigenvectors());
|
---|
109 | VERIFY_RAISES_ASSERT(eiSymmUninitialized.operatorSqrt());
|
---|
110 | VERIFY_RAISES_ASSERT(eiSymmUninitialized.operatorInverseSqrt());
|
---|
111 |
|
---|
112 | // test Tridiagonalization's methods
|
---|
113 | Tridiagonalization<MatrixType> tridiag(symmC);
|
---|
114 | // FIXME tridiag.matrixQ().adjoint() does not work
|
---|
115 | VERIFY_IS_APPROX(MatrixType(symmC.template selfadjointView<Lower>()), tridiag.matrixQ() * tridiag.matrixT().eval() * MatrixType(tridiag.matrixQ()).adjoint());
|
---|
116 |
|
---|
117 | if (rows > 1)
|
---|
118 | {
|
---|
119 | // Test matrix with NaN
|
---|
120 | symmC(0,0) = std::numeric_limits<typename MatrixType::RealScalar>::quiet_NaN();
|
---|
121 | SelfAdjointEigenSolver<MatrixType> eiSymmNaN(symmC);
|
---|
122 | VERIFY_IS_EQUAL(eiSymmNaN.info(), NoConvergence);
|
---|
123 | }
|
---|
124 | }
|
---|
125 |
|
---|
126 | void test_eigensolver_selfadjoint()
|
---|
127 | {
|
---|
128 | int s = 0;
|
---|
129 | for(int i = 0; i < g_repeat; i++) {
|
---|
130 | // very important to test 3x3 and 2x2 matrices since we provide special paths for them
|
---|
131 | CALL_SUBTEST_1( selfadjointeigensolver(Matrix2f()) );
|
---|
132 | CALL_SUBTEST_1( selfadjointeigensolver(Matrix2d()) );
|
---|
133 | CALL_SUBTEST_1( selfadjointeigensolver(Matrix3f()) );
|
---|
134 | CALL_SUBTEST_1( selfadjointeigensolver(Matrix3d()) );
|
---|
135 | CALL_SUBTEST_2( selfadjointeigensolver(Matrix4d()) );
|
---|
136 | s = internal::random<int>(1,EIGEN_TEST_MAX_SIZE/4);
|
---|
137 | CALL_SUBTEST_3( selfadjointeigensolver(MatrixXf(s,s)) );
|
---|
138 | s = internal::random<int>(1,EIGEN_TEST_MAX_SIZE/4);
|
---|
139 | CALL_SUBTEST_4( selfadjointeigensolver(MatrixXd(s,s)) );
|
---|
140 | s = internal::random<int>(1,EIGEN_TEST_MAX_SIZE/4);
|
---|
141 | CALL_SUBTEST_5( selfadjointeigensolver(MatrixXcd(s,s)) );
|
---|
142 |
|
---|
143 | s = internal::random<int>(1,EIGEN_TEST_MAX_SIZE/4);
|
---|
144 | CALL_SUBTEST_9( selfadjointeigensolver(Matrix<std::complex<double>,Dynamic,Dynamic,RowMajor>(s,s)) );
|
---|
145 |
|
---|
146 | // some trivial but implementation-wise tricky cases
|
---|
147 | CALL_SUBTEST_4( selfadjointeigensolver(MatrixXd(1,1)) );
|
---|
148 | CALL_SUBTEST_4( selfadjointeigensolver(MatrixXd(2,2)) );
|
---|
149 | CALL_SUBTEST_6( selfadjointeigensolver(Matrix<double,1,1>()) );
|
---|
150 | CALL_SUBTEST_7( selfadjointeigensolver(Matrix<double,2,2>()) );
|
---|
151 | }
|
---|
152 |
|
---|
153 | // Test problem size constructors
|
---|
154 | s = internal::random<int>(1,EIGEN_TEST_MAX_SIZE/4);
|
---|
155 | CALL_SUBTEST_8(SelfAdjointEigenSolver<MatrixXf> tmp1(s));
|
---|
156 | CALL_SUBTEST_8(Tridiagonalization<MatrixXf> tmp2(s));
|
---|
157 |
|
---|
158 | TEST_SET_BUT_UNUSED_VARIABLE(s)
|
---|
159 | }
|
---|
160 |
|
---|