1 | // This file is part of Eigen, a lightweight C++ template library
|
---|
2 | // for linear algebra.
|
---|
3 | //
|
---|
4 | // Copyright (C) 2009-2010 Benoit Jacob <jacob.benoit.1@gmail.com>
|
---|
5 | //
|
---|
6 | // This Source Code Form is subject to the terms of the Mozilla
|
---|
7 | // Public License v. 2.0. If a copy of the MPL was not distributed
|
---|
8 | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
---|
9 |
|
---|
10 | #include "main.h"
|
---|
11 | #include <Eigen/QR>
|
---|
12 |
|
---|
13 | template<typename MatrixType> void householder(const MatrixType& m)
|
---|
14 | {
|
---|
15 | typedef typename MatrixType::Index Index;
|
---|
16 | static bool even = true;
|
---|
17 | even = !even;
|
---|
18 | /* this test covers the following files:
|
---|
19 | Householder.h
|
---|
20 | */
|
---|
21 | Index rows = m.rows();
|
---|
22 | Index cols = m.cols();
|
---|
23 |
|
---|
24 | typedef typename MatrixType::Scalar Scalar;
|
---|
25 | typedef typename NumTraits<Scalar>::Real RealScalar;
|
---|
26 | typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> VectorType;
|
---|
27 | typedef Matrix<Scalar, internal::decrement_size<MatrixType::RowsAtCompileTime>::ret, 1> EssentialVectorType;
|
---|
28 | typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, MatrixType::RowsAtCompileTime> SquareMatrixType;
|
---|
29 | typedef Matrix<Scalar, Dynamic, MatrixType::ColsAtCompileTime> HBlockMatrixType;
|
---|
30 | typedef Matrix<Scalar, Dynamic, 1> HCoeffsVectorType;
|
---|
31 |
|
---|
32 | typedef Matrix<Scalar, MatrixType::ColsAtCompileTime, MatrixType::RowsAtCompileTime> TMatrixType;
|
---|
33 |
|
---|
34 | Matrix<Scalar, EIGEN_SIZE_MAX(MatrixType::RowsAtCompileTime,MatrixType::ColsAtCompileTime), 1> _tmp((std::max)(rows,cols));
|
---|
35 | Scalar* tmp = &_tmp.coeffRef(0,0);
|
---|
36 |
|
---|
37 | Scalar beta;
|
---|
38 | RealScalar alpha;
|
---|
39 | EssentialVectorType essential;
|
---|
40 |
|
---|
41 | VectorType v1 = VectorType::Random(rows), v2;
|
---|
42 | v2 = v1;
|
---|
43 | v1.makeHouseholder(essential, beta, alpha);
|
---|
44 | v1.applyHouseholderOnTheLeft(essential,beta,tmp);
|
---|
45 | VERIFY_IS_APPROX(v1.norm(), v2.norm());
|
---|
46 | if(rows>=2) VERIFY_IS_MUCH_SMALLER_THAN(v1.tail(rows-1).norm(), v1.norm());
|
---|
47 | v1 = VectorType::Random(rows);
|
---|
48 | v2 = v1;
|
---|
49 | v1.applyHouseholderOnTheLeft(essential,beta,tmp);
|
---|
50 | VERIFY_IS_APPROX(v1.norm(), v2.norm());
|
---|
51 |
|
---|
52 | MatrixType m1(rows, cols),
|
---|
53 | m2(rows, cols);
|
---|
54 |
|
---|
55 | v1 = VectorType::Random(rows);
|
---|
56 | if(even) v1.tail(rows-1).setZero();
|
---|
57 | m1.colwise() = v1;
|
---|
58 | m2 = m1;
|
---|
59 | m1.col(0).makeHouseholder(essential, beta, alpha);
|
---|
60 | m1.applyHouseholderOnTheLeft(essential,beta,tmp);
|
---|
61 | VERIFY_IS_APPROX(m1.norm(), m2.norm());
|
---|
62 | if(rows>=2) VERIFY_IS_MUCH_SMALLER_THAN(m1.block(1,0,rows-1,cols).norm(), m1.norm());
|
---|
63 | VERIFY_IS_MUCH_SMALLER_THAN(numext::imag(m1(0,0)), numext::real(m1(0,0)));
|
---|
64 | VERIFY_IS_APPROX(numext::real(m1(0,0)), alpha);
|
---|
65 |
|
---|
66 | v1 = VectorType::Random(rows);
|
---|
67 | if(even) v1.tail(rows-1).setZero();
|
---|
68 | SquareMatrixType m3(rows,rows), m4(rows,rows);
|
---|
69 | m3.rowwise() = v1.transpose();
|
---|
70 | m4 = m3;
|
---|
71 | m3.row(0).makeHouseholder(essential, beta, alpha);
|
---|
72 | m3.applyHouseholderOnTheRight(essential,beta,tmp);
|
---|
73 | VERIFY_IS_APPROX(m3.norm(), m4.norm());
|
---|
74 | if(rows>=2) VERIFY_IS_MUCH_SMALLER_THAN(m3.block(0,1,rows,rows-1).norm(), m3.norm());
|
---|
75 | VERIFY_IS_MUCH_SMALLER_THAN(numext::imag(m3(0,0)), numext::real(m3(0,0)));
|
---|
76 | VERIFY_IS_APPROX(numext::real(m3(0,0)), alpha);
|
---|
77 |
|
---|
78 | // test householder sequence on the left with a shift
|
---|
79 |
|
---|
80 | Index shift = internal::random<Index>(0, std::max<Index>(rows-2,0));
|
---|
81 | Index brows = rows - shift;
|
---|
82 | m1.setRandom(rows, cols);
|
---|
83 | HBlockMatrixType hbm = m1.block(shift,0,brows,cols);
|
---|
84 | HouseholderQR<HBlockMatrixType> qr(hbm);
|
---|
85 | m2 = m1;
|
---|
86 | m2.block(shift,0,brows,cols) = qr.matrixQR();
|
---|
87 | HCoeffsVectorType hc = qr.hCoeffs().conjugate();
|
---|
88 | HouseholderSequence<MatrixType, HCoeffsVectorType> hseq(m2, hc);
|
---|
89 | hseq.setLength(hc.size()).setShift(shift);
|
---|
90 | VERIFY(hseq.length() == hc.size());
|
---|
91 | VERIFY(hseq.shift() == shift);
|
---|
92 |
|
---|
93 | MatrixType m5 = m2;
|
---|
94 | m5.block(shift,0,brows,cols).template triangularView<StrictlyLower>().setZero();
|
---|
95 | VERIFY_IS_APPROX(hseq * m5, m1); // test applying hseq directly
|
---|
96 | m3 = hseq;
|
---|
97 | VERIFY_IS_APPROX(m3 * m5, m1); // test evaluating hseq to a dense matrix, then applying
|
---|
98 |
|
---|
99 | SquareMatrixType hseq_mat = hseq;
|
---|
100 | SquareMatrixType hseq_mat_conj = hseq.conjugate();
|
---|
101 | SquareMatrixType hseq_mat_adj = hseq.adjoint();
|
---|
102 | SquareMatrixType hseq_mat_trans = hseq.transpose();
|
---|
103 | SquareMatrixType m6 = SquareMatrixType::Random(rows, rows);
|
---|
104 | VERIFY_IS_APPROX(hseq_mat.adjoint(), hseq_mat_adj);
|
---|
105 | VERIFY_IS_APPROX(hseq_mat.conjugate(), hseq_mat_conj);
|
---|
106 | VERIFY_IS_APPROX(hseq_mat.transpose(), hseq_mat_trans);
|
---|
107 | VERIFY_IS_APPROX(hseq_mat * m6, hseq_mat * m6);
|
---|
108 | VERIFY_IS_APPROX(hseq_mat.adjoint() * m6, hseq_mat_adj * m6);
|
---|
109 | VERIFY_IS_APPROX(hseq_mat.conjugate() * m6, hseq_mat_conj * m6);
|
---|
110 | VERIFY_IS_APPROX(hseq_mat.transpose() * m6, hseq_mat_trans * m6);
|
---|
111 | VERIFY_IS_APPROX(m6 * hseq_mat, m6 * hseq_mat);
|
---|
112 | VERIFY_IS_APPROX(m6 * hseq_mat.adjoint(), m6 * hseq_mat_adj);
|
---|
113 | VERIFY_IS_APPROX(m6 * hseq_mat.conjugate(), m6 * hseq_mat_conj);
|
---|
114 | VERIFY_IS_APPROX(m6 * hseq_mat.transpose(), m6 * hseq_mat_trans);
|
---|
115 |
|
---|
116 | // test householder sequence on the right with a shift
|
---|
117 |
|
---|
118 | TMatrixType tm2 = m2.transpose();
|
---|
119 | HouseholderSequence<TMatrixType, HCoeffsVectorType, OnTheRight> rhseq(tm2, hc);
|
---|
120 | rhseq.setLength(hc.size()).setShift(shift);
|
---|
121 | VERIFY_IS_APPROX(rhseq * m5, m1); // test applying rhseq directly
|
---|
122 | m3 = rhseq;
|
---|
123 | VERIFY_IS_APPROX(m3 * m5, m1); // test evaluating rhseq to a dense matrix, then applying
|
---|
124 | }
|
---|
125 |
|
---|
126 | void test_householder()
|
---|
127 | {
|
---|
128 | for(int i = 0; i < g_repeat; i++) {
|
---|
129 | CALL_SUBTEST_1( householder(Matrix<double,2,2>()) );
|
---|
130 | CALL_SUBTEST_2( householder(Matrix<float,2,3>()) );
|
---|
131 | CALL_SUBTEST_3( householder(Matrix<double,3,5>()) );
|
---|
132 | CALL_SUBTEST_4( householder(Matrix<float,4,4>()) );
|
---|
133 | CALL_SUBTEST_5( householder(MatrixXd(internal::random<int>(1,EIGEN_TEST_MAX_SIZE),internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
|
---|
134 | CALL_SUBTEST_6( householder(MatrixXcf(internal::random<int>(1,EIGEN_TEST_MAX_SIZE),internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
|
---|
135 | CALL_SUBTEST_7( householder(MatrixXf(internal::random<int>(1,EIGEN_TEST_MAX_SIZE),internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
|
---|
136 | CALL_SUBTEST_8( householder(Matrix<double,1,1>()) );
|
---|
137 | }
|
---|
138 | }
|
---|