1 | // This file is part of Eigen, a lightweight C++ template library
|
---|
2 | // for linear algebra.
|
---|
3 | //
|
---|
4 | // Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
|
---|
5 | // Copyright (C) 2009 Benoit Jacob <jacob.benoit.1@gmail.com>
|
---|
6 | //
|
---|
7 | // This Source Code Form is subject to the terms of the Mozilla
|
---|
8 | // Public License v. 2.0. If a copy of the MPL was not distributed
|
---|
9 | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
---|
10 |
|
---|
11 | #include "main.h"
|
---|
12 | #include <Eigen/SVD>
|
---|
13 |
|
---|
14 | template<typename MatrixType, typename JacobiScalar>
|
---|
15 | void jacobi(const MatrixType& m = MatrixType())
|
---|
16 | {
|
---|
17 | typedef typename MatrixType::Index Index;
|
---|
18 | Index rows = m.rows();
|
---|
19 | Index cols = m.cols();
|
---|
20 |
|
---|
21 | enum {
|
---|
22 | RowsAtCompileTime = MatrixType::RowsAtCompileTime,
|
---|
23 | ColsAtCompileTime = MatrixType::ColsAtCompileTime
|
---|
24 | };
|
---|
25 |
|
---|
26 | typedef Matrix<JacobiScalar, 2, 1> JacobiVector;
|
---|
27 |
|
---|
28 | const MatrixType a(MatrixType::Random(rows, cols));
|
---|
29 |
|
---|
30 | JacobiVector v = JacobiVector::Random().normalized();
|
---|
31 | JacobiScalar c = v.x(), s = v.y();
|
---|
32 | JacobiRotation<JacobiScalar> rot(c, s);
|
---|
33 |
|
---|
34 | {
|
---|
35 | Index p = internal::random<Index>(0, rows-1);
|
---|
36 | Index q;
|
---|
37 | do {
|
---|
38 | q = internal::random<Index>(0, rows-1);
|
---|
39 | } while (q == p);
|
---|
40 |
|
---|
41 | MatrixType b = a;
|
---|
42 | b.applyOnTheLeft(p, q, rot);
|
---|
43 | VERIFY_IS_APPROX(b.row(p), c * a.row(p) + numext::conj(s) * a.row(q));
|
---|
44 | VERIFY_IS_APPROX(b.row(q), -s * a.row(p) + numext::conj(c) * a.row(q));
|
---|
45 | }
|
---|
46 |
|
---|
47 | {
|
---|
48 | Index p = internal::random<Index>(0, cols-1);
|
---|
49 | Index q;
|
---|
50 | do {
|
---|
51 | q = internal::random<Index>(0, cols-1);
|
---|
52 | } while (q == p);
|
---|
53 |
|
---|
54 | MatrixType b = a;
|
---|
55 | b.applyOnTheRight(p, q, rot);
|
---|
56 | VERIFY_IS_APPROX(b.col(p), c * a.col(p) - s * a.col(q));
|
---|
57 | VERIFY_IS_APPROX(b.col(q), numext::conj(s) * a.col(p) + numext::conj(c) * a.col(q));
|
---|
58 | }
|
---|
59 | }
|
---|
60 |
|
---|
61 | void test_jacobi()
|
---|
62 | {
|
---|
63 | for(int i = 0; i < g_repeat; i++) {
|
---|
64 | CALL_SUBTEST_1(( jacobi<Matrix3f, float>() ));
|
---|
65 | CALL_SUBTEST_2(( jacobi<Matrix4d, double>() ));
|
---|
66 | CALL_SUBTEST_3(( jacobi<Matrix4cf, float>() ));
|
---|
67 | CALL_SUBTEST_3(( jacobi<Matrix4cf, std::complex<float> >() ));
|
---|
68 |
|
---|
69 | int r = internal::random<int>(2, internal::random<int>(1,EIGEN_TEST_MAX_SIZE)/2),
|
---|
70 | c = internal::random<int>(2, internal::random<int>(1,EIGEN_TEST_MAX_SIZE)/2);
|
---|
71 | CALL_SUBTEST_4(( jacobi<MatrixXf, float>(MatrixXf(r,c)) ));
|
---|
72 | CALL_SUBTEST_5(( jacobi<MatrixXcd, double>(MatrixXcd(r,c)) ));
|
---|
73 | CALL_SUBTEST_5(( jacobi<MatrixXcd, std::complex<double> >(MatrixXcd(r,c)) ));
|
---|
74 | // complex<float> is really important to test as it is the only way to cover conjugation issues in certain unaligned paths
|
---|
75 | CALL_SUBTEST_6(( jacobi<MatrixXcf, float>(MatrixXcf(r,c)) ));
|
---|
76 | CALL_SUBTEST_6(( jacobi<MatrixXcf, std::complex<float> >(MatrixXcf(r,c)) ));
|
---|
77 |
|
---|
78 | TEST_SET_BUT_UNUSED_VARIABLE(r);
|
---|
79 | TEST_SET_BUT_UNUSED_VARIABLE(c);
|
---|
80 | }
|
---|
81 | }
|
---|