source: pacpussensors/trunk/Vislab/lib3dv-1.2.0/lib3dv/eigen/test/jacobisvd.cpp

Last change on this file was 136, checked in by ldecherf, 8 years ago

Doc

File size: 17.5 KB
Line 
1// This file is part of Eigen, a lightweight C++ template library
2// for linear algebra.
3//
4// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
5// Copyright (C) 2009 Benoit Jacob <jacob.benoit.1@gmail.com>
6//
7// This Source Code Form is subject to the terms of the Mozilla
8// Public License v. 2.0. If a copy of the MPL was not distributed
9// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
10
11// discard stack allocation as that too bypasses malloc
12#define EIGEN_STACK_ALLOCATION_LIMIT 0
13#define EIGEN_RUNTIME_NO_MALLOC
14#include "main.h"
15#include <Eigen/SVD>
16
17template<typename MatrixType, int QRPreconditioner>
18void jacobisvd_check_full(const MatrixType& m, const JacobiSVD<MatrixType, QRPreconditioner>& svd)
19{
20 typedef typename MatrixType::Index Index;
21 Index rows = m.rows();
22 Index cols = m.cols();
23
24 enum {
25 RowsAtCompileTime = MatrixType::RowsAtCompileTime,
26 ColsAtCompileTime = MatrixType::ColsAtCompileTime
27 };
28
29 typedef typename MatrixType::Scalar Scalar;
30 typedef Matrix<Scalar, RowsAtCompileTime, RowsAtCompileTime> MatrixUType;
31 typedef Matrix<Scalar, ColsAtCompileTime, ColsAtCompileTime> MatrixVType;
32
33 MatrixType sigma = MatrixType::Zero(rows,cols);
34 sigma.diagonal() = svd.singularValues().template cast<Scalar>();
35 MatrixUType u = svd.matrixU();
36 MatrixVType v = svd.matrixV();
37
38 VERIFY_IS_APPROX(m, u * sigma * v.adjoint());
39 VERIFY_IS_UNITARY(u);
40 VERIFY_IS_UNITARY(v);
41}
42
43template<typename MatrixType, int QRPreconditioner>
44void jacobisvd_compare_to_full(const MatrixType& m,
45 unsigned int computationOptions,
46 const JacobiSVD<MatrixType, QRPreconditioner>& referenceSvd)
47{
48 typedef typename MatrixType::Index Index;
49 Index rows = m.rows();
50 Index cols = m.cols();
51 Index diagSize = (std::min)(rows, cols);
52
53 JacobiSVD<MatrixType, QRPreconditioner> svd(m, computationOptions);
54
55 VERIFY_IS_APPROX(svd.singularValues(), referenceSvd.singularValues());
56 if(computationOptions & ComputeFullU)
57 VERIFY_IS_APPROX(svd.matrixU(), referenceSvd.matrixU());
58 if(computationOptions & ComputeThinU)
59 VERIFY_IS_APPROX(svd.matrixU(), referenceSvd.matrixU().leftCols(diagSize));
60 if(computationOptions & ComputeFullV)
61 VERIFY_IS_APPROX(svd.matrixV(), referenceSvd.matrixV());
62 if(computationOptions & ComputeThinV)
63 VERIFY_IS_APPROX(svd.matrixV(), referenceSvd.matrixV().leftCols(diagSize));
64}
65
66template<typename MatrixType, int QRPreconditioner>
67void jacobisvd_solve(const MatrixType& m, unsigned int computationOptions)
68{
69 typedef typename MatrixType::Scalar Scalar;
70 typedef typename MatrixType::RealScalar RealScalar;
71 typedef typename MatrixType::Index Index;
72 Index rows = m.rows();
73 Index cols = m.cols();
74
75 enum {
76 RowsAtCompileTime = MatrixType::RowsAtCompileTime,
77 ColsAtCompileTime = MatrixType::ColsAtCompileTime
78 };
79
80 typedef Matrix<Scalar, RowsAtCompileTime, Dynamic> RhsType;
81 typedef Matrix<Scalar, ColsAtCompileTime, Dynamic> SolutionType;
82
83 RhsType rhs = RhsType::Random(rows, internal::random<Index>(1, cols));
84 JacobiSVD<MatrixType, QRPreconditioner> svd(m, computationOptions);
85
86 if(internal::is_same<RealScalar,double>::value) svd.setThreshold(1e-8);
87 else if(internal::is_same<RealScalar,float>::value) svd.setThreshold(1e-4);
88
89 SolutionType x = svd.solve(rhs);
90
91 RealScalar residual = (m*x-rhs).norm();
92 // Check that there is no significantly better solution in the neighborhood of x
93 if(!test_isMuchSmallerThan(residual,rhs.norm()))
94 {
95 // If the residual is very small, then we have an exact solution, so we are already good.
96 for(int k=0;k<x.rows();++k)
97 {
98 SolutionType y(x);
99 y.row(k).array() += 2*NumTraits<RealScalar>::epsilon();
100 RealScalar residual_y = (m*y-rhs).norm();
101 VERIFY( test_isApprox(residual_y,residual) || residual < residual_y );
102
103 y.row(k) = x.row(k).array() - 2*NumTraits<RealScalar>::epsilon();
104 residual_y = (m*y-rhs).norm();
105 VERIFY( test_isApprox(residual_y,residual) || residual < residual_y );
106 }
107 }
108
109 // evaluate normal equation which works also for least-squares solutions
110 if(internal::is_same<RealScalar,double>::value)
111 {
112 // This test is not stable with single precision.
113 // This is probably because squaring m signicantly affects the precision.
114 VERIFY_IS_APPROX(m.adjoint()*m*x,m.adjoint()*rhs);
115 }
116
117 // check minimal norm solutions
118 {
119 // generate a full-rank m x n problem with m<n
120 enum {
121 RankAtCompileTime2 = ColsAtCompileTime==Dynamic ? Dynamic : (ColsAtCompileTime)/2+1,
122 RowsAtCompileTime3 = ColsAtCompileTime==Dynamic ? Dynamic : ColsAtCompileTime+1
123 };
124 typedef Matrix<Scalar, RankAtCompileTime2, ColsAtCompileTime> MatrixType2;
125 typedef Matrix<Scalar, RankAtCompileTime2, 1> RhsType2;
126 typedef Matrix<Scalar, ColsAtCompileTime, RankAtCompileTime2> MatrixType2T;
127 Index rank = RankAtCompileTime2==Dynamic ? internal::random<Index>(1,cols) : Index(RankAtCompileTime2);
128 MatrixType2 m2(rank,cols);
129 int guard = 0;
130 do {
131 m2.setRandom();
132 } while(m2.jacobiSvd().setThreshold(test_precision<Scalar>()).rank()!=rank && (++guard)<10);
133 VERIFY(guard<10);
134 RhsType2 rhs2 = RhsType2::Random(rank);
135 // use QR to find a reference minimal norm solution
136 HouseholderQR<MatrixType2T> qr(m2.adjoint());
137 Matrix<Scalar,Dynamic,1> tmp = qr.matrixQR().topLeftCorner(rank,rank).template triangularView<Upper>().adjoint().solve(rhs2);
138 tmp.conservativeResize(cols);
139 tmp.tail(cols-rank).setZero();
140 SolutionType x21 = qr.householderQ() * tmp;
141 // now check with SVD
142 JacobiSVD<MatrixType2, ColPivHouseholderQRPreconditioner> svd2(m2, computationOptions);
143 SolutionType x22 = svd2.solve(rhs2);
144 VERIFY_IS_APPROX(m2*x21, rhs2);
145 VERIFY_IS_APPROX(m2*x22, rhs2);
146 VERIFY_IS_APPROX(x21, x22);
147
148 // Now check with a rank deficient matrix
149 typedef Matrix<Scalar, RowsAtCompileTime3, ColsAtCompileTime> MatrixType3;
150 typedef Matrix<Scalar, RowsAtCompileTime3, 1> RhsType3;
151 Index rows3 = RowsAtCompileTime3==Dynamic ? internal::random<Index>(rank+1,2*cols) : Index(RowsAtCompileTime3);
152 Matrix<Scalar,RowsAtCompileTime3,Dynamic> C = Matrix<Scalar,RowsAtCompileTime3,Dynamic>::Random(rows3,rank);
153 MatrixType3 m3 = C * m2;
154 RhsType3 rhs3 = C * rhs2;
155 JacobiSVD<MatrixType3, ColPivHouseholderQRPreconditioner> svd3(m3, computationOptions);
156 SolutionType x3 = svd3.solve(rhs3);
157 if(svd3.rank()!=rank) {
158 std::cout << m3 << "\n\n";
159 std::cout << svd3.singularValues().transpose() << "\n";
160 std::cout << svd3.rank() << " == " << rank << "\n";
161 std::cout << x21.norm() << " == " << x3.norm() << "\n";
162 }
163// VERIFY_IS_APPROX(m3*x3, rhs3);
164 VERIFY_IS_APPROX(m3*x21, rhs3);
165 VERIFY_IS_APPROX(m2*x3, rhs2);
166
167 VERIFY_IS_APPROX(x21, x3);
168 }
169}
170
171template<typename MatrixType, int QRPreconditioner>
172void jacobisvd_test_all_computation_options(const MatrixType& m)
173{
174 if (QRPreconditioner == NoQRPreconditioner && m.rows() != m.cols())
175 return;
176 JacobiSVD<MatrixType, QRPreconditioner> fullSvd(m, ComputeFullU|ComputeFullV);
177 CALL_SUBTEST(( jacobisvd_check_full(m, fullSvd) ));
178 CALL_SUBTEST(( jacobisvd_solve<MatrixType, QRPreconditioner>(m, ComputeFullU | ComputeFullV) ));
179
180 #if defined __INTEL_COMPILER
181 // remark #111: statement is unreachable
182 #pragma warning disable 111
183 #endif
184 if(QRPreconditioner == FullPivHouseholderQRPreconditioner)
185 return;
186
187 CALL_SUBTEST(( jacobisvd_compare_to_full(m, ComputeFullU, fullSvd) ));
188 CALL_SUBTEST(( jacobisvd_compare_to_full(m, ComputeFullV, fullSvd) ));
189 CALL_SUBTEST(( jacobisvd_compare_to_full(m, 0, fullSvd) ));
190
191 if (MatrixType::ColsAtCompileTime == Dynamic) {
192 // thin U/V are only available with dynamic number of columns
193 CALL_SUBTEST(( jacobisvd_compare_to_full(m, ComputeFullU|ComputeThinV, fullSvd) ));
194 CALL_SUBTEST(( jacobisvd_compare_to_full(m, ComputeThinV, fullSvd) ));
195 CALL_SUBTEST(( jacobisvd_compare_to_full(m, ComputeThinU|ComputeFullV, fullSvd) ));
196 CALL_SUBTEST(( jacobisvd_compare_to_full(m, ComputeThinU , fullSvd) ));
197 CALL_SUBTEST(( jacobisvd_compare_to_full(m, ComputeThinU|ComputeThinV, fullSvd) ));
198 CALL_SUBTEST(( jacobisvd_solve<MatrixType, QRPreconditioner>(m, ComputeFullU | ComputeThinV) ));
199 CALL_SUBTEST(( jacobisvd_solve<MatrixType, QRPreconditioner>(m, ComputeThinU | ComputeFullV) ));
200 CALL_SUBTEST(( jacobisvd_solve<MatrixType, QRPreconditioner>(m, ComputeThinU | ComputeThinV) ));
201
202 // test reconstruction
203 typedef typename MatrixType::Index Index;
204 Index diagSize = (std::min)(m.rows(), m.cols());
205 JacobiSVD<MatrixType, QRPreconditioner> svd(m, ComputeThinU | ComputeThinV);
206 VERIFY_IS_APPROX(m, svd.matrixU().leftCols(diagSize) * svd.singularValues().asDiagonal() * svd.matrixV().leftCols(diagSize).adjoint());
207 }
208}
209
210template<typename MatrixType>
211void jacobisvd(const MatrixType& a = MatrixType(), bool pickrandom = true)
212{
213 MatrixType m = a;
214 if(pickrandom)
215 {
216 typedef typename MatrixType::Scalar Scalar;
217 typedef typename MatrixType::RealScalar RealScalar;
218 typedef typename MatrixType::Index Index;
219 Index diagSize = (std::min)(a.rows(), a.cols());
220 RealScalar s = std::numeric_limits<RealScalar>::max_exponent10/4;
221 s = internal::random<RealScalar>(1,s);
222 Matrix<RealScalar,Dynamic,1> d = Matrix<RealScalar,Dynamic,1>::Random(diagSize);
223 for(Index k=0; k<diagSize; ++k)
224 d(k) = d(k)*std::pow(RealScalar(10),internal::random<RealScalar>(-s,s));
225 m = Matrix<Scalar,Dynamic,Dynamic>::Random(a.rows(),diagSize) * d.asDiagonal() * Matrix<Scalar,Dynamic,Dynamic>::Random(diagSize,a.cols());
226 // cancel some coeffs
227 Index n = internal::random<Index>(0,m.size()-1);
228 for(Index i=0; i<n; ++i)
229 m(internal::random<Index>(0,m.rows()-1), internal::random<Index>(0,m.cols()-1)) = Scalar(0);
230 }
231
232 CALL_SUBTEST(( jacobisvd_test_all_computation_options<MatrixType, FullPivHouseholderQRPreconditioner>(m) ));
233 CALL_SUBTEST(( jacobisvd_test_all_computation_options<MatrixType, ColPivHouseholderQRPreconditioner>(m) ));
234 CALL_SUBTEST(( jacobisvd_test_all_computation_options<MatrixType, HouseholderQRPreconditioner>(m) ));
235 CALL_SUBTEST(( jacobisvd_test_all_computation_options<MatrixType, NoQRPreconditioner>(m) ));
236}
237
238template<typename MatrixType> void jacobisvd_verify_assert(const MatrixType& m)
239{
240 typedef typename MatrixType::Scalar Scalar;
241 typedef typename MatrixType::Index Index;
242 Index rows = m.rows();
243 Index cols = m.cols();
244
245 enum {
246 RowsAtCompileTime = MatrixType::RowsAtCompileTime,
247 ColsAtCompileTime = MatrixType::ColsAtCompileTime
248 };
249
250 typedef Matrix<Scalar, RowsAtCompileTime, 1> RhsType;
251
252 RhsType rhs(rows);
253
254 JacobiSVD<MatrixType> svd;
255 VERIFY_RAISES_ASSERT(svd.matrixU())
256 VERIFY_RAISES_ASSERT(svd.singularValues())
257 VERIFY_RAISES_ASSERT(svd.matrixV())
258 VERIFY_RAISES_ASSERT(svd.solve(rhs))
259
260 MatrixType a = MatrixType::Zero(rows, cols);
261 a.setZero();
262 svd.compute(a, 0);
263 VERIFY_RAISES_ASSERT(svd.matrixU())
264 VERIFY_RAISES_ASSERT(svd.matrixV())
265 svd.singularValues();
266 VERIFY_RAISES_ASSERT(svd.solve(rhs))
267
268 if (ColsAtCompileTime == Dynamic)
269 {
270 svd.compute(a, ComputeThinU);
271 svd.matrixU();
272 VERIFY_RAISES_ASSERT(svd.matrixV())
273 VERIFY_RAISES_ASSERT(svd.solve(rhs))
274
275 svd.compute(a, ComputeThinV);
276 svd.matrixV();
277 VERIFY_RAISES_ASSERT(svd.matrixU())
278 VERIFY_RAISES_ASSERT(svd.solve(rhs))
279
280 JacobiSVD<MatrixType, FullPivHouseholderQRPreconditioner> svd_fullqr;
281 VERIFY_RAISES_ASSERT(svd_fullqr.compute(a, ComputeFullU|ComputeThinV))
282 VERIFY_RAISES_ASSERT(svd_fullqr.compute(a, ComputeThinU|ComputeThinV))
283 VERIFY_RAISES_ASSERT(svd_fullqr.compute(a, ComputeThinU|ComputeFullV))
284 }
285 else
286 {
287 VERIFY_RAISES_ASSERT(svd.compute(a, ComputeThinU))
288 VERIFY_RAISES_ASSERT(svd.compute(a, ComputeThinV))
289 }
290}
291
292template<typename MatrixType>
293void jacobisvd_method()
294{
295 enum { Size = MatrixType::RowsAtCompileTime };
296 typedef typename MatrixType::RealScalar RealScalar;
297 typedef Matrix<RealScalar, Size, 1> RealVecType;
298 MatrixType m = MatrixType::Identity();
299 VERIFY_IS_APPROX(m.jacobiSvd().singularValues(), RealVecType::Ones());
300 VERIFY_RAISES_ASSERT(m.jacobiSvd().matrixU());
301 VERIFY_RAISES_ASSERT(m.jacobiSvd().matrixV());
302 VERIFY_IS_APPROX(m.jacobiSvd(ComputeFullU|ComputeFullV).solve(m), m);
303}
304
305// work around stupid msvc error when constructing at compile time an expression that involves
306// a division by zero, even if the numeric type has floating point
307template<typename Scalar>
308EIGEN_DONT_INLINE Scalar zero() { return Scalar(0); }
309
310// workaround aggressive optimization in ICC
311template<typename T> EIGEN_DONT_INLINE T sub(T a, T b) { return a - b; }
312
313template<typename MatrixType>
314void jacobisvd_inf_nan()
315{
316 // all this function does is verify we don't iterate infinitely on nan/inf values
317
318 JacobiSVD<MatrixType> svd;
319 typedef typename MatrixType::Scalar Scalar;
320 Scalar some_inf = Scalar(1) / zero<Scalar>();
321 VERIFY(sub(some_inf, some_inf) != sub(some_inf, some_inf));
322 svd.compute(MatrixType::Constant(10,10,some_inf), ComputeFullU | ComputeFullV);
323
324 Scalar nan = std::numeric_limits<Scalar>::quiet_NaN();
325 VERIFY(nan != nan);
326 svd.compute(MatrixType::Constant(10,10,nan), ComputeFullU | ComputeFullV);
327
328 MatrixType m = MatrixType::Zero(10,10);
329 m(internal::random<int>(0,9), internal::random<int>(0,9)) = some_inf;
330 svd.compute(m, ComputeFullU | ComputeFullV);
331
332 m = MatrixType::Zero(10,10);
333 m(internal::random<int>(0,9), internal::random<int>(0,9)) = nan;
334 svd.compute(m, ComputeFullU | ComputeFullV);
335
336 // regression test for bug 791
337 m.resize(3,3);
338 m << 0, 2*NumTraits<Scalar>::epsilon(), 0.5,
339 0, -0.5, 0,
340 nan, 0, 0;
341 svd.compute(m, ComputeFullU | ComputeFullV);
342}
343
344// Regression test for bug 286: JacobiSVD loops indefinitely with some
345// matrices containing denormal numbers.
346void jacobisvd_bug286()
347{
348#if defined __INTEL_COMPILER
349// shut up warning #239: floating point underflow
350#pragma warning push
351#pragma warning disable 239
352#endif
353 Matrix2d M;
354 M << -7.90884e-313, -4.94e-324,
355 0, 5.60844e-313;
356#if defined __INTEL_COMPILER
357#pragma warning pop
358#endif
359 JacobiSVD<Matrix2d> svd;
360 svd.compute(M); // just check we don't loop indefinitely
361}
362
363void jacobisvd_preallocate()
364{
365 Vector3f v(3.f, 2.f, 1.f);
366 MatrixXf m = v.asDiagonal();
367
368 internal::set_is_malloc_allowed(false);
369 VERIFY_RAISES_ASSERT(VectorXf tmp(10);)
370 JacobiSVD<MatrixXf> svd;
371 internal::set_is_malloc_allowed(true);
372 svd.compute(m);
373 VERIFY_IS_APPROX(svd.singularValues(), v);
374
375 JacobiSVD<MatrixXf> svd2(3,3);
376 internal::set_is_malloc_allowed(false);
377 svd2.compute(m);
378 internal::set_is_malloc_allowed(true);
379 VERIFY_IS_APPROX(svd2.singularValues(), v);
380 VERIFY_RAISES_ASSERT(svd2.matrixU());
381 VERIFY_RAISES_ASSERT(svd2.matrixV());
382 svd2.compute(m, ComputeFullU | ComputeFullV);
383 VERIFY_IS_APPROX(svd2.matrixU(), Matrix3f::Identity());
384 VERIFY_IS_APPROX(svd2.matrixV(), Matrix3f::Identity());
385 internal::set_is_malloc_allowed(false);
386 svd2.compute(m);
387 internal::set_is_malloc_allowed(true);
388
389 JacobiSVD<MatrixXf> svd3(3,3,ComputeFullU|ComputeFullV);
390 internal::set_is_malloc_allowed(false);
391 svd2.compute(m);
392 internal::set_is_malloc_allowed(true);
393 VERIFY_IS_APPROX(svd2.singularValues(), v);
394 VERIFY_IS_APPROX(svd2.matrixU(), Matrix3f::Identity());
395 VERIFY_IS_APPROX(svd2.matrixV(), Matrix3f::Identity());
396 internal::set_is_malloc_allowed(false);
397 svd2.compute(m, ComputeFullU|ComputeFullV);
398 internal::set_is_malloc_allowed(true);
399}
400
401void test_jacobisvd()
402{
403 CALL_SUBTEST_3(( jacobisvd_verify_assert(Matrix3f()) ));
404 CALL_SUBTEST_4(( jacobisvd_verify_assert(Matrix4d()) ));
405 CALL_SUBTEST_7(( jacobisvd_verify_assert(MatrixXf(10,12)) ));
406 CALL_SUBTEST_8(( jacobisvd_verify_assert(MatrixXcd(7,5)) ));
407
408 for(int i = 0; i < g_repeat; i++) {
409 Matrix2cd m;
410 m << 0, 1,
411 0, 1;
412 CALL_SUBTEST_1(( jacobisvd(m, false) ));
413 m << 1, 0,
414 1, 0;
415 CALL_SUBTEST_1(( jacobisvd(m, false) ));
416
417 Matrix2d n;
418 n << 0, 0,
419 0, 0;
420 CALL_SUBTEST_2(( jacobisvd(n, false) ));
421 n << 0, 0,
422 0, 1;
423 CALL_SUBTEST_2(( jacobisvd(n, false) ));
424
425 CALL_SUBTEST_3(( jacobisvd<Matrix3f>() ));
426 CALL_SUBTEST_4(( jacobisvd<Matrix4d>() ));
427 CALL_SUBTEST_5(( jacobisvd<Matrix<float,3,5> >() ));
428 CALL_SUBTEST_6(( jacobisvd<Matrix<double,Dynamic,2> >(Matrix<double,Dynamic,2>(10,2)) ));
429
430 int r = internal::random<int>(1, 30),
431 c = internal::random<int>(1, 30);
432
433 TEST_SET_BUT_UNUSED_VARIABLE(r)
434 TEST_SET_BUT_UNUSED_VARIABLE(c)
435
436 CALL_SUBTEST_10(( jacobisvd<MatrixXd>(MatrixXd(r,c)) ));
437 CALL_SUBTEST_7(( jacobisvd<MatrixXf>(MatrixXf(r,c)) ));
438 CALL_SUBTEST_8(( jacobisvd<MatrixXcd>(MatrixXcd(r,c)) ));
439 (void) r;
440 (void) c;
441
442 // Test on inf/nan matrix
443 CALL_SUBTEST_7( jacobisvd_inf_nan<MatrixXf>() );
444 CALL_SUBTEST_10( jacobisvd_inf_nan<MatrixXd>() );
445 }
446
447 CALL_SUBTEST_7(( jacobisvd<MatrixXf>(MatrixXf(internal::random<int>(EIGEN_TEST_MAX_SIZE/4, EIGEN_TEST_MAX_SIZE/2), internal::random<int>(EIGEN_TEST_MAX_SIZE/4, EIGEN_TEST_MAX_SIZE/2))) ));
448 CALL_SUBTEST_8(( jacobisvd<MatrixXcd>(MatrixXcd(internal::random<int>(EIGEN_TEST_MAX_SIZE/4, EIGEN_TEST_MAX_SIZE/3), internal::random<int>(EIGEN_TEST_MAX_SIZE/4, EIGEN_TEST_MAX_SIZE/3))) ));
449
450 // test matrixbase method
451 CALL_SUBTEST_1(( jacobisvd_method<Matrix2cd>() ));
452 CALL_SUBTEST_3(( jacobisvd_method<Matrix3f>() ));
453
454 // Test problem size constructors
455 CALL_SUBTEST_7( JacobiSVD<MatrixXf>(10,10) );
456
457 // Check that preallocation avoids subsequent mallocs
458 CALL_SUBTEST_9( jacobisvd_preallocate() );
459
460 // Regression check for bug 286
461 CALL_SUBTEST_2( jacobisvd_bug286() );
462}
Note: See TracBrowser for help on using the repository browser.