1 | // This file is part of Eigen, a lightweight C++ template library
|
---|
2 | // for linear algebra.
|
---|
3 | //
|
---|
4 | // Copyright (C) 2010-2011 Jitse Niesen <jitse@maths.leeds.ac.uk>
|
---|
5 | //
|
---|
6 | // This Source Code Form is subject to the terms of the Mozilla
|
---|
7 | // Public License v. 2.0. If a copy of the MPL was not distributed
|
---|
8 | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
---|
9 |
|
---|
10 | #include "main.h"
|
---|
11 |
|
---|
12 | template<typename MatrixType>
|
---|
13 | bool equalsIdentity(const MatrixType& A)
|
---|
14 | {
|
---|
15 | typedef typename MatrixType::Index Index;
|
---|
16 | typedef typename MatrixType::Scalar Scalar;
|
---|
17 | Scalar zero = static_cast<Scalar>(0);
|
---|
18 |
|
---|
19 | bool offDiagOK = true;
|
---|
20 | for (Index i = 0; i < A.rows(); ++i) {
|
---|
21 | for (Index j = i+1; j < A.cols(); ++j) {
|
---|
22 | offDiagOK = offDiagOK && (A(i,j) == zero);
|
---|
23 | }
|
---|
24 | }
|
---|
25 | for (Index i = 0; i < A.rows(); ++i) {
|
---|
26 | for (Index j = 0; j < (std::min)(i, A.cols()); ++j) {
|
---|
27 | offDiagOK = offDiagOK && (A(i,j) == zero);
|
---|
28 | }
|
---|
29 | }
|
---|
30 |
|
---|
31 | bool diagOK = (A.diagonal().array() == 1).all();
|
---|
32 | return offDiagOK && diagOK;
|
---|
33 | }
|
---|
34 |
|
---|
35 | template<typename VectorType>
|
---|
36 | void testVectorType(const VectorType& base)
|
---|
37 | {
|
---|
38 | typedef typename internal::traits<VectorType>::Index Index;
|
---|
39 | typedef typename internal::traits<VectorType>::Scalar Scalar;
|
---|
40 |
|
---|
41 | const Index size = base.size();
|
---|
42 |
|
---|
43 | Scalar high = internal::random<Scalar>(-500,500);
|
---|
44 | Scalar low = (size == 1 ? high : internal::random<Scalar>(-500,500));
|
---|
45 | if (low>high) std::swap(low,high);
|
---|
46 |
|
---|
47 | const Scalar step = ((size == 1) ? 1 : (high-low)/(size-1));
|
---|
48 |
|
---|
49 | // check whether the result yields what we expect it to do
|
---|
50 | VectorType m(base);
|
---|
51 | m.setLinSpaced(size,low,high);
|
---|
52 |
|
---|
53 | VectorType n(size);
|
---|
54 | for (int i=0; i<size; ++i)
|
---|
55 | n(i) = low+i*step;
|
---|
56 |
|
---|
57 | VERIFY_IS_APPROX(m,n);
|
---|
58 |
|
---|
59 | // random access version
|
---|
60 | m = VectorType::LinSpaced(size,low,high);
|
---|
61 | VERIFY_IS_APPROX(m,n);
|
---|
62 |
|
---|
63 | // Assignment of a RowVectorXd to a MatrixXd (regression test for bug #79).
|
---|
64 | VERIFY( (MatrixXd(RowVectorXd::LinSpaced(3, 0, 1)) - RowVector3d(0, 0.5, 1)).norm() < std::numeric_limits<Scalar>::epsilon() );
|
---|
65 |
|
---|
66 | // These guys sometimes fail! This is not good. Any ideas how to fix them!?
|
---|
67 | //VERIFY( m(m.size()-1) == high );
|
---|
68 | //VERIFY( m(0) == low );
|
---|
69 |
|
---|
70 | // sequential access version
|
---|
71 | m = VectorType::LinSpaced(Sequential,size,low,high);
|
---|
72 | VERIFY_IS_APPROX(m,n);
|
---|
73 |
|
---|
74 | // These guys sometimes fail! This is not good. Any ideas how to fix them!?
|
---|
75 | //VERIFY( m(m.size()-1) == high );
|
---|
76 | //VERIFY( m(0) == low );
|
---|
77 |
|
---|
78 | // check whether everything works with row and col major vectors
|
---|
79 | Matrix<Scalar,Dynamic,1> row_vector(size);
|
---|
80 | Matrix<Scalar,1,Dynamic> col_vector(size);
|
---|
81 | row_vector.setLinSpaced(size,low,high);
|
---|
82 | col_vector.setLinSpaced(size,low,high);
|
---|
83 | // when using the extended precision (e.g., FPU) the relative error might exceed 1 bit
|
---|
84 | // when computing the squared sum in isApprox, thus the 2x factor.
|
---|
85 | VERIFY( row_vector.isApprox(col_vector.transpose(), Scalar(2)*NumTraits<Scalar>::epsilon()));
|
---|
86 |
|
---|
87 | Matrix<Scalar,Dynamic,1> size_changer(size+50);
|
---|
88 | size_changer.setLinSpaced(size,low,high);
|
---|
89 | VERIFY( size_changer.size() == size );
|
---|
90 |
|
---|
91 | typedef Matrix<Scalar,1,1> ScalarMatrix;
|
---|
92 | ScalarMatrix scalar;
|
---|
93 | scalar.setLinSpaced(1,low,high);
|
---|
94 | VERIFY_IS_APPROX( scalar, ScalarMatrix::Constant(high) );
|
---|
95 | VERIFY_IS_APPROX( ScalarMatrix::LinSpaced(1,low,high), ScalarMatrix::Constant(high) );
|
---|
96 |
|
---|
97 | // regression test for bug 526 (linear vectorized transversal)
|
---|
98 | if (size > 1) {
|
---|
99 | m.tail(size-1).setLinSpaced(low, high);
|
---|
100 | VERIFY_IS_APPROX(m(size-1), high);
|
---|
101 | }
|
---|
102 | }
|
---|
103 |
|
---|
104 | template<typename MatrixType>
|
---|
105 | void testMatrixType(const MatrixType& m)
|
---|
106 | {
|
---|
107 | typedef typename MatrixType::Index Index;
|
---|
108 | const Index rows = m.rows();
|
---|
109 | const Index cols = m.cols();
|
---|
110 |
|
---|
111 | MatrixType A;
|
---|
112 | A.setIdentity(rows, cols);
|
---|
113 | VERIFY(equalsIdentity(A));
|
---|
114 | VERIFY(equalsIdentity(MatrixType::Identity(rows, cols)));
|
---|
115 | }
|
---|
116 |
|
---|
117 | void test_nullary()
|
---|
118 | {
|
---|
119 | CALL_SUBTEST_1( testMatrixType(Matrix2d()) );
|
---|
120 | CALL_SUBTEST_2( testMatrixType(MatrixXcf(internal::random<int>(1,300),internal::random<int>(1,300))) );
|
---|
121 | CALL_SUBTEST_3( testMatrixType(MatrixXf(internal::random<int>(1,300),internal::random<int>(1,300))) );
|
---|
122 |
|
---|
123 | for(int i = 0; i < g_repeat; i++) {
|
---|
124 | CALL_SUBTEST_4( testVectorType(VectorXd(internal::random<int>(1,300))) );
|
---|
125 | CALL_SUBTEST_5( testVectorType(Vector4d()) ); // regression test for bug 232
|
---|
126 | CALL_SUBTEST_6( testVectorType(Vector3d()) );
|
---|
127 | CALL_SUBTEST_7( testVectorType(VectorXf(internal::random<int>(1,300))) );
|
---|
128 | CALL_SUBTEST_8( testVectorType(Vector3f()) );
|
---|
129 | CALL_SUBTEST_8( testVectorType(Matrix<float,1,1>()) );
|
---|
130 | }
|
---|
131 | }
|
---|