1 | // This file is part of Eigen, a lightweight C++ template library
|
---|
2 | // for linear algebra.
|
---|
3 | //
|
---|
4 | // Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
|
---|
5 | // Copyright (C) 2009 Benoit Jacob <jacob.benoit.1@gmail.com>
|
---|
6 | //
|
---|
7 | // This Source Code Form is subject to the terms of the Mozilla
|
---|
8 | // Public License v. 2.0. If a copy of the MPL was not distributed
|
---|
9 | // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
---|
10 |
|
---|
11 | #include "main.h"
|
---|
12 | #include <Eigen/QR>
|
---|
13 |
|
---|
14 | template<typename MatrixType> void qr()
|
---|
15 | {
|
---|
16 | typedef typename MatrixType::Index Index;
|
---|
17 |
|
---|
18 | Index rows = internal::random<Index>(20,200), cols = internal::random<int>(20,200), cols2 = internal::random<int>(20,200);
|
---|
19 | Index rank = internal::random<Index>(1, (std::min)(rows, cols)-1);
|
---|
20 |
|
---|
21 | typedef typename MatrixType::Scalar Scalar;
|
---|
22 | typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, MatrixType::RowsAtCompileTime> MatrixQType;
|
---|
23 | MatrixType m1;
|
---|
24 | createRandomPIMatrixOfRank(rank,rows,cols,m1);
|
---|
25 | FullPivHouseholderQR<MatrixType> qr(m1);
|
---|
26 | VERIFY(rank == qr.rank());
|
---|
27 | VERIFY(cols - qr.rank() == qr.dimensionOfKernel());
|
---|
28 | VERIFY(!qr.isInjective());
|
---|
29 | VERIFY(!qr.isInvertible());
|
---|
30 | VERIFY(!qr.isSurjective());
|
---|
31 |
|
---|
32 | MatrixType r = qr.matrixQR();
|
---|
33 |
|
---|
34 | MatrixQType q = qr.matrixQ();
|
---|
35 | VERIFY_IS_UNITARY(q);
|
---|
36 |
|
---|
37 | // FIXME need better way to construct trapezoid
|
---|
38 | for(int i = 0; i < rows; i++) for(int j = 0; j < cols; j++) if(i>j) r(i,j) = Scalar(0);
|
---|
39 |
|
---|
40 | MatrixType c = qr.matrixQ() * r * qr.colsPermutation().inverse();
|
---|
41 |
|
---|
42 | VERIFY_IS_APPROX(m1, c);
|
---|
43 |
|
---|
44 | MatrixType m2 = MatrixType::Random(cols,cols2);
|
---|
45 | MatrixType m3 = m1*m2;
|
---|
46 | m2 = MatrixType::Random(cols,cols2);
|
---|
47 | m2 = qr.solve(m3);
|
---|
48 | VERIFY_IS_APPROX(m3, m1*m2);
|
---|
49 | }
|
---|
50 |
|
---|
51 | template<typename MatrixType> void qr_invertible()
|
---|
52 | {
|
---|
53 | using std::log;
|
---|
54 | using std::abs;
|
---|
55 | typedef typename NumTraits<typename MatrixType::Scalar>::Real RealScalar;
|
---|
56 | typedef typename MatrixType::Scalar Scalar;
|
---|
57 |
|
---|
58 | int size = internal::random<int>(10,50);
|
---|
59 |
|
---|
60 | MatrixType m1(size, size), m2(size, size), m3(size, size);
|
---|
61 | m1 = MatrixType::Random(size,size);
|
---|
62 |
|
---|
63 | if (internal::is_same<RealScalar,float>::value)
|
---|
64 | {
|
---|
65 | // let's build a matrix more stable to inverse
|
---|
66 | MatrixType a = MatrixType::Random(size,size*2);
|
---|
67 | m1 += a * a.adjoint();
|
---|
68 | }
|
---|
69 |
|
---|
70 | FullPivHouseholderQR<MatrixType> qr(m1);
|
---|
71 | VERIFY(qr.isInjective());
|
---|
72 | VERIFY(qr.isInvertible());
|
---|
73 | VERIFY(qr.isSurjective());
|
---|
74 |
|
---|
75 | m3 = MatrixType::Random(size,size);
|
---|
76 | m2 = qr.solve(m3);
|
---|
77 | VERIFY_IS_APPROX(m3, m1*m2);
|
---|
78 |
|
---|
79 | // now construct a matrix with prescribed determinant
|
---|
80 | m1.setZero();
|
---|
81 | for(int i = 0; i < size; i++) m1(i,i) = internal::random<Scalar>();
|
---|
82 | RealScalar absdet = abs(m1.diagonal().prod());
|
---|
83 | m3 = qr.matrixQ(); // get a unitary
|
---|
84 | m1 = m3 * m1 * m3;
|
---|
85 | qr.compute(m1);
|
---|
86 | VERIFY_IS_APPROX(absdet, qr.absDeterminant());
|
---|
87 | VERIFY_IS_APPROX(log(absdet), qr.logAbsDeterminant());
|
---|
88 | }
|
---|
89 |
|
---|
90 | template<typename MatrixType> void qr_verify_assert()
|
---|
91 | {
|
---|
92 | MatrixType tmp;
|
---|
93 |
|
---|
94 | FullPivHouseholderQR<MatrixType> qr;
|
---|
95 | VERIFY_RAISES_ASSERT(qr.matrixQR())
|
---|
96 | VERIFY_RAISES_ASSERT(qr.solve(tmp))
|
---|
97 | VERIFY_RAISES_ASSERT(qr.matrixQ())
|
---|
98 | VERIFY_RAISES_ASSERT(qr.dimensionOfKernel())
|
---|
99 | VERIFY_RAISES_ASSERT(qr.isInjective())
|
---|
100 | VERIFY_RAISES_ASSERT(qr.isSurjective())
|
---|
101 | VERIFY_RAISES_ASSERT(qr.isInvertible())
|
---|
102 | VERIFY_RAISES_ASSERT(qr.inverse())
|
---|
103 | VERIFY_RAISES_ASSERT(qr.absDeterminant())
|
---|
104 | VERIFY_RAISES_ASSERT(qr.logAbsDeterminant())
|
---|
105 | }
|
---|
106 |
|
---|
107 | void test_qr_fullpivoting()
|
---|
108 | {
|
---|
109 | for(int i = 0; i < 1; i++) {
|
---|
110 | // FIXME : very weird bug here
|
---|
111 | // CALL_SUBTEST(qr(Matrix2f()) );
|
---|
112 | CALL_SUBTEST_1( qr<MatrixXf>() );
|
---|
113 | CALL_SUBTEST_2( qr<MatrixXd>() );
|
---|
114 | CALL_SUBTEST_3( qr<MatrixXcd>() );
|
---|
115 | }
|
---|
116 |
|
---|
117 | for(int i = 0; i < g_repeat; i++) {
|
---|
118 | CALL_SUBTEST_1( qr_invertible<MatrixXf>() );
|
---|
119 | CALL_SUBTEST_2( qr_invertible<MatrixXd>() );
|
---|
120 | CALL_SUBTEST_4( qr_invertible<MatrixXcf>() );
|
---|
121 | CALL_SUBTEST_3( qr_invertible<MatrixXcd>() );
|
---|
122 | }
|
---|
123 |
|
---|
124 | CALL_SUBTEST_5(qr_verify_assert<Matrix3f>());
|
---|
125 | CALL_SUBTEST_6(qr_verify_assert<Matrix3d>());
|
---|
126 | CALL_SUBTEST_1(qr_verify_assert<MatrixXf>());
|
---|
127 | CALL_SUBTEST_2(qr_verify_assert<MatrixXd>());
|
---|
128 | CALL_SUBTEST_4(qr_verify_assert<MatrixXcf>());
|
---|
129 | CALL_SUBTEST_3(qr_verify_assert<MatrixXcd>());
|
---|
130 |
|
---|
131 | // Test problem size constructors
|
---|
132 | CALL_SUBTEST_7(FullPivHouseholderQR<MatrixXf>(10, 20));
|
---|
133 | CALL_SUBTEST_7((FullPivHouseholderQR<Matrix<float,10,20> >(10,20)));
|
---|
134 | CALL_SUBTEST_7((FullPivHouseholderQR<Matrix<float,10,20> >(Matrix<float,10,20>::Random())));
|
---|
135 | CALL_SUBTEST_7((FullPivHouseholderQR<Matrix<float,20,10> >(20,10)));
|
---|
136 | CALL_SUBTEST_7((FullPivHouseholderQR<Matrix<float,20,10> >(Matrix<float,20,10>::Random())));
|
---|
137 | }
|
---|